Article Type
Changed
Mon, 01/29/2024 - 14:02

Five people in the United Kingdom have been diagnosed with Alzheimer’s disease resulting from a medical treatment they received decades earlier, new research shows. 

Investigators say they are the first known cases of medically acquired AD in living people, but outside experts say the findings should be interpreted cautiously.

The individuals received treatment as children with human growth hormone extracted from pituitary glands of cadavers (c-hGH). Between 1958-1985, an estimated 30,000 people worldwide, mostly children, were treated with c-hGH for genetic disorders and growth hormone deficiencies. 

The therapy was halted in 1985 after three patients in the US who received the treatment later died of Creutzfeldt-Jakob disease (CJD) transmitted through batches of c-hGH that were contaminated with disease-causing prions. 

The new study builds on the investigators’ earlier work that showed the batches of c-hGH also contained amyloid-beta protein and that the protein could be transmitted decades later. These five cases were referred to or reviewed by researchers and clinicians at a prion clinic led by one of the lead researchers.

There are no reports of amyloid-beta transmission through any other medical or surgical procedures, researchers stress, and there is no evidence that amyloid-beta can be passed on during routine patient care or in daily activities. 

“However, the recognition of transmission of amyloid-beta pathology in these rare situations should lead us to review measures to prevent accidental transmission via other medical or surgical procedures, in order to prevent such cases occurring in future,” lead author John Collinge, MD, director of the University of College London Institute of Prion Diseases, London, England, and leader of the UK’s National Prion Clinic, said in a press release. 

“Importantly, our findings also suggest that Alzheimer’s and some other neurological conditions share similar disease processes to CJD, and this may have important implications for understanding and treating Alzheimer’s disease in the future,” Dr. Collinge continued.

The findings were published online January 29 in Nature Medicine. 
 

Building on Earlier Work

The research builds on investigators’ previous 2015 work that found archived samples of c-hGH were also contaminated with amyloid-beta protein. In 2018, mouse studies showed that c-hGH samples stored for decades could still transmit amyloid-beta via injection. 

Researchers said the findings suggested that individuals exposed to contaminated c-hGH who did not die from CJD might eventually develop AD.

Patients in the new study developed neurological symptoms consistent with AD between the ages of 38 and 55 years. The individual cases were either referred to or reviewed by experts in the National Prion Clinic in the UK between 2017 and 2022. The clinic coordinates the National Prion Monitoring Cohort, a longitudinal study of individuals with confirmed prion diseases. 

Of the eight cases, three were diagnosed with AD before referral to the clinic; two others met criteria for an AD diagnosis; and three did not meet the criteria. Three of the patients — two of whom had AD — are now deceased. 

All patients in the study received c-hGH prepared using a method called Wilhelmi or Hartree-modified Wilhelmi preparation (HWP).

Biomarker analyses confirmed the AD diagnosis in two patients. Other cases showed either progressive brain volume loss on brain imaging or elevated cerebrospinal fluid total tau and phosphorylated tau, or evidence of amyloid-beta deposits on autopsy. 
 

 

 

‘Potentially Transmissible’

The cases offered diverse presentations. Some were not symptomatic and some failed to meet current diagnostic criteria for sporadic Alzheimer’s disease. Treatment duration and frequency differed among those in the study, as did their age at treatment onset and completion. That and other factors could contribute to the diverse phenotype recorded in individuals, investigators note. 

Investigators examined and ruled out other factors that might explain the individuals’ cognitive symptoms, including childhood intellectual disability, which has been linked to dementia risk, the underlying condition that prompted their treatment with c-hGH, growth hormone deficiency, and cranial radiotherapy, which four of the individuals had received. They also ruled out inherited disease in all five of the cases with samples available for testing. 

“Taken together, the only factor common to all of the patients whom we describe is treatment with the HWP subtype of c-hGH,” the authors write. “Given the strong experimental evidence for A-beta transmission from relevant archived HWP c-hGH batches, we conclude that this is the most plausible explanation for the findings observed.”

Investigators say the findings show that, like other prion diseases, AD has three etiologies: sporadic, inherited, and rare acquired forms, or iatrogenic AD. 

“The clinical syndrome developed by these individuals can, therefore, be termed iatrogenic Alzheimer’s disease, and Alzheimer’s disease should now be recognized as a potentially transmissible disorder,” the authors write. 

“Our cases suggest that, similarly to what is observed in human prion diseases, iatrogenic forms of Alzheimer’s disease differ phenotypically from sporadic and inherited forms, with some individuals remaining asymptomatic despite exposure to A-beta seeds due to protective factors that, at present, are unknown,” they continue
 

‘Measure of Skepticism’

In an accompanying editorial, Mathias Jucker, PhD, of the Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany, and Lary C. Walker, PhD, in the Department of Neurology at Emory University, Atlanta, write that the findings should be considered “with a measure of skepticism.”

“The cases presented are diverse and complicated; the individuals had undergone a variety of medical interventions for various disorders earlier in life, and it is difficult to exclude a contribution of these circumstances to the complex disease phenotypes that appeared many years later,” they write. 

However, they continue, “there is good reason to take the findings seriously.”

“From a practical standpoint, this report reinforces the potential of amyloid-beta seeds as targets for early prevention, and it underscores the importance of informed caution in the preparation of surgical instruments, handling of tissues, and implementation of therapeutic biologics, particularly those derived from human sources,” Dr. Jucker and Dr. Walker write. 

Commenting on the findings for this news organization, Christopher Weber, PhD, director of global science initiatives for the Alzheimer’s Association, says the idea that amyloid-beta is transmissible between individuals has been shown before. 

“We’ve known for a long time that it is possible to create abnormal amyloid buildup — similar to that seen in Alzheimer’s – in the brain of an animal by injecting it with amyloid-beta. We also transfer human Alzheimer’s genes into animals to initiate abnormal, Alzheimer’s-like processes in their brains,” he said. “Thus, the idea that amyloid is transferable between individuals is not so novel as implied in the new paper.”

However, the study does highlight the importance of safety measures to prevent the accidental transmission of amyloid-beta, Weber added. 

“It is a reasonable and actionable caution that the scientific and clinical communities must understand the possible risks and ensure that all methods of transmission are eliminated — for example, with complete and conscientious sterilization of surgical instruments,” he said. “Bottom line: We shouldn’t put amyloid-beta into people’s brains, either accidentally or on purpose, and appropriate measures should be in place to ensure that doesn’t happen.”

The study was supported by the Medical Research Council, the National Institute for Health and Care Research (NIHR), the NIHR University College of London Hospital Biomedical Research Centre, Alzheimer’s Research UK, and the Stroke Association. Dr. Collinge is a shareholder and director of D-Gen, Ltd., an academic spin-out company working in the field of prion disease diagnosis, decontamination and therapeutics. Dr. Jucker and Dr. Walker report no conflicts of interest. 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Five people in the United Kingdom have been diagnosed with Alzheimer’s disease resulting from a medical treatment they received decades earlier, new research shows. 

Investigators say they are the first known cases of medically acquired AD in living people, but outside experts say the findings should be interpreted cautiously.

The individuals received treatment as children with human growth hormone extracted from pituitary glands of cadavers (c-hGH). Between 1958-1985, an estimated 30,000 people worldwide, mostly children, were treated with c-hGH for genetic disorders and growth hormone deficiencies. 

The therapy was halted in 1985 after three patients in the US who received the treatment later died of Creutzfeldt-Jakob disease (CJD) transmitted through batches of c-hGH that were contaminated with disease-causing prions. 

The new study builds on the investigators’ earlier work that showed the batches of c-hGH also contained amyloid-beta protein and that the protein could be transmitted decades later. These five cases were referred to or reviewed by researchers and clinicians at a prion clinic led by one of the lead researchers.

There are no reports of amyloid-beta transmission through any other medical or surgical procedures, researchers stress, and there is no evidence that amyloid-beta can be passed on during routine patient care or in daily activities. 

“However, the recognition of transmission of amyloid-beta pathology in these rare situations should lead us to review measures to prevent accidental transmission via other medical or surgical procedures, in order to prevent such cases occurring in future,” lead author John Collinge, MD, director of the University of College London Institute of Prion Diseases, London, England, and leader of the UK’s National Prion Clinic, said in a press release. 

“Importantly, our findings also suggest that Alzheimer’s and some other neurological conditions share similar disease processes to CJD, and this may have important implications for understanding and treating Alzheimer’s disease in the future,” Dr. Collinge continued.

The findings were published online January 29 in Nature Medicine. 
 

Building on Earlier Work

The research builds on investigators’ previous 2015 work that found archived samples of c-hGH were also contaminated with amyloid-beta protein. In 2018, mouse studies showed that c-hGH samples stored for decades could still transmit amyloid-beta via injection. 

Researchers said the findings suggested that individuals exposed to contaminated c-hGH who did not die from CJD might eventually develop AD.

Patients in the new study developed neurological symptoms consistent with AD between the ages of 38 and 55 years. The individual cases were either referred to or reviewed by experts in the National Prion Clinic in the UK between 2017 and 2022. The clinic coordinates the National Prion Monitoring Cohort, a longitudinal study of individuals with confirmed prion diseases. 

Of the eight cases, three were diagnosed with AD before referral to the clinic; two others met criteria for an AD diagnosis; and three did not meet the criteria. Three of the patients — two of whom had AD — are now deceased. 

All patients in the study received c-hGH prepared using a method called Wilhelmi or Hartree-modified Wilhelmi preparation (HWP).

Biomarker analyses confirmed the AD diagnosis in two patients. Other cases showed either progressive brain volume loss on brain imaging or elevated cerebrospinal fluid total tau and phosphorylated tau, or evidence of amyloid-beta deposits on autopsy. 
 

 

 

‘Potentially Transmissible’

The cases offered diverse presentations. Some were not symptomatic and some failed to meet current diagnostic criteria for sporadic Alzheimer’s disease. Treatment duration and frequency differed among those in the study, as did their age at treatment onset and completion. That and other factors could contribute to the diverse phenotype recorded in individuals, investigators note. 

Investigators examined and ruled out other factors that might explain the individuals’ cognitive symptoms, including childhood intellectual disability, which has been linked to dementia risk, the underlying condition that prompted their treatment with c-hGH, growth hormone deficiency, and cranial radiotherapy, which four of the individuals had received. They also ruled out inherited disease in all five of the cases with samples available for testing. 

“Taken together, the only factor common to all of the patients whom we describe is treatment with the HWP subtype of c-hGH,” the authors write. “Given the strong experimental evidence for A-beta transmission from relevant archived HWP c-hGH batches, we conclude that this is the most plausible explanation for the findings observed.”

Investigators say the findings show that, like other prion diseases, AD has three etiologies: sporadic, inherited, and rare acquired forms, or iatrogenic AD. 

“The clinical syndrome developed by these individuals can, therefore, be termed iatrogenic Alzheimer’s disease, and Alzheimer’s disease should now be recognized as a potentially transmissible disorder,” the authors write. 

“Our cases suggest that, similarly to what is observed in human prion diseases, iatrogenic forms of Alzheimer’s disease differ phenotypically from sporadic and inherited forms, with some individuals remaining asymptomatic despite exposure to A-beta seeds due to protective factors that, at present, are unknown,” they continue
 

‘Measure of Skepticism’

In an accompanying editorial, Mathias Jucker, PhD, of the Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany, and Lary C. Walker, PhD, in the Department of Neurology at Emory University, Atlanta, write that the findings should be considered “with a measure of skepticism.”

“The cases presented are diverse and complicated; the individuals had undergone a variety of medical interventions for various disorders earlier in life, and it is difficult to exclude a contribution of these circumstances to the complex disease phenotypes that appeared many years later,” they write. 

However, they continue, “there is good reason to take the findings seriously.”

“From a practical standpoint, this report reinforces the potential of amyloid-beta seeds as targets for early prevention, and it underscores the importance of informed caution in the preparation of surgical instruments, handling of tissues, and implementation of therapeutic biologics, particularly those derived from human sources,” Dr. Jucker and Dr. Walker write. 

Commenting on the findings for this news organization, Christopher Weber, PhD, director of global science initiatives for the Alzheimer’s Association, says the idea that amyloid-beta is transmissible between individuals has been shown before. 

“We’ve known for a long time that it is possible to create abnormal amyloid buildup — similar to that seen in Alzheimer’s – in the brain of an animal by injecting it with amyloid-beta. We also transfer human Alzheimer’s genes into animals to initiate abnormal, Alzheimer’s-like processes in their brains,” he said. “Thus, the idea that amyloid is transferable between individuals is not so novel as implied in the new paper.”

However, the study does highlight the importance of safety measures to prevent the accidental transmission of amyloid-beta, Weber added. 

“It is a reasonable and actionable caution that the scientific and clinical communities must understand the possible risks and ensure that all methods of transmission are eliminated — for example, with complete and conscientious sterilization of surgical instruments,” he said. “Bottom line: We shouldn’t put amyloid-beta into people’s brains, either accidentally or on purpose, and appropriate measures should be in place to ensure that doesn’t happen.”

The study was supported by the Medical Research Council, the National Institute for Health and Care Research (NIHR), the NIHR University College of London Hospital Biomedical Research Centre, Alzheimer’s Research UK, and the Stroke Association. Dr. Collinge is a shareholder and director of D-Gen, Ltd., an academic spin-out company working in the field of prion disease diagnosis, decontamination and therapeutics. Dr. Jucker and Dr. Walker report no conflicts of interest. 

A version of this article appeared on Medscape.com.

Five people in the United Kingdom have been diagnosed with Alzheimer’s disease resulting from a medical treatment they received decades earlier, new research shows. 

Investigators say they are the first known cases of medically acquired AD in living people, but outside experts say the findings should be interpreted cautiously.

The individuals received treatment as children with human growth hormone extracted from pituitary glands of cadavers (c-hGH). Between 1958-1985, an estimated 30,000 people worldwide, mostly children, were treated with c-hGH for genetic disorders and growth hormone deficiencies. 

The therapy was halted in 1985 after three patients in the US who received the treatment later died of Creutzfeldt-Jakob disease (CJD) transmitted through batches of c-hGH that were contaminated with disease-causing prions. 

The new study builds on the investigators’ earlier work that showed the batches of c-hGH also contained amyloid-beta protein and that the protein could be transmitted decades later. These five cases were referred to or reviewed by researchers and clinicians at a prion clinic led by one of the lead researchers.

There are no reports of amyloid-beta transmission through any other medical or surgical procedures, researchers stress, and there is no evidence that amyloid-beta can be passed on during routine patient care or in daily activities. 

“However, the recognition of transmission of amyloid-beta pathology in these rare situations should lead us to review measures to prevent accidental transmission via other medical or surgical procedures, in order to prevent such cases occurring in future,” lead author John Collinge, MD, director of the University of College London Institute of Prion Diseases, London, England, and leader of the UK’s National Prion Clinic, said in a press release. 

“Importantly, our findings also suggest that Alzheimer’s and some other neurological conditions share similar disease processes to CJD, and this may have important implications for understanding and treating Alzheimer’s disease in the future,” Dr. Collinge continued.

The findings were published online January 29 in Nature Medicine. 
 

Building on Earlier Work

The research builds on investigators’ previous 2015 work that found archived samples of c-hGH were also contaminated with amyloid-beta protein. In 2018, mouse studies showed that c-hGH samples stored for decades could still transmit amyloid-beta via injection. 

Researchers said the findings suggested that individuals exposed to contaminated c-hGH who did not die from CJD might eventually develop AD.

Patients in the new study developed neurological symptoms consistent with AD between the ages of 38 and 55 years. The individual cases were either referred to or reviewed by experts in the National Prion Clinic in the UK between 2017 and 2022. The clinic coordinates the National Prion Monitoring Cohort, a longitudinal study of individuals with confirmed prion diseases. 

Of the eight cases, three were diagnosed with AD before referral to the clinic; two others met criteria for an AD diagnosis; and three did not meet the criteria. Three of the patients — two of whom had AD — are now deceased. 

All patients in the study received c-hGH prepared using a method called Wilhelmi or Hartree-modified Wilhelmi preparation (HWP).

Biomarker analyses confirmed the AD diagnosis in two patients. Other cases showed either progressive brain volume loss on brain imaging or elevated cerebrospinal fluid total tau and phosphorylated tau, or evidence of amyloid-beta deposits on autopsy. 
 

 

 

‘Potentially Transmissible’

The cases offered diverse presentations. Some were not symptomatic and some failed to meet current diagnostic criteria for sporadic Alzheimer’s disease. Treatment duration and frequency differed among those in the study, as did their age at treatment onset and completion. That and other factors could contribute to the diverse phenotype recorded in individuals, investigators note. 

Investigators examined and ruled out other factors that might explain the individuals’ cognitive symptoms, including childhood intellectual disability, which has been linked to dementia risk, the underlying condition that prompted their treatment with c-hGH, growth hormone deficiency, and cranial radiotherapy, which four of the individuals had received. They also ruled out inherited disease in all five of the cases with samples available for testing. 

“Taken together, the only factor common to all of the patients whom we describe is treatment with the HWP subtype of c-hGH,” the authors write. “Given the strong experimental evidence for A-beta transmission from relevant archived HWP c-hGH batches, we conclude that this is the most plausible explanation for the findings observed.”

Investigators say the findings show that, like other prion diseases, AD has three etiologies: sporadic, inherited, and rare acquired forms, or iatrogenic AD. 

“The clinical syndrome developed by these individuals can, therefore, be termed iatrogenic Alzheimer’s disease, and Alzheimer’s disease should now be recognized as a potentially transmissible disorder,” the authors write. 

“Our cases suggest that, similarly to what is observed in human prion diseases, iatrogenic forms of Alzheimer’s disease differ phenotypically from sporadic and inherited forms, with some individuals remaining asymptomatic despite exposure to A-beta seeds due to protective factors that, at present, are unknown,” they continue
 

‘Measure of Skepticism’

In an accompanying editorial, Mathias Jucker, PhD, of the Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany, and Lary C. Walker, PhD, in the Department of Neurology at Emory University, Atlanta, write that the findings should be considered “with a measure of skepticism.”

“The cases presented are diverse and complicated; the individuals had undergone a variety of medical interventions for various disorders earlier in life, and it is difficult to exclude a contribution of these circumstances to the complex disease phenotypes that appeared many years later,” they write. 

However, they continue, “there is good reason to take the findings seriously.”

“From a practical standpoint, this report reinforces the potential of amyloid-beta seeds as targets for early prevention, and it underscores the importance of informed caution in the preparation of surgical instruments, handling of tissues, and implementation of therapeutic biologics, particularly those derived from human sources,” Dr. Jucker and Dr. Walker write. 

Commenting on the findings for this news organization, Christopher Weber, PhD, director of global science initiatives for the Alzheimer’s Association, says the idea that amyloid-beta is transmissible between individuals has been shown before. 

“We’ve known for a long time that it is possible to create abnormal amyloid buildup — similar to that seen in Alzheimer’s – in the brain of an animal by injecting it with amyloid-beta. We also transfer human Alzheimer’s genes into animals to initiate abnormal, Alzheimer’s-like processes in their brains,” he said. “Thus, the idea that amyloid is transferable between individuals is not so novel as implied in the new paper.”

However, the study does highlight the importance of safety measures to prevent the accidental transmission of amyloid-beta, Weber added. 

“It is a reasonable and actionable caution that the scientific and clinical communities must understand the possible risks and ensure that all methods of transmission are eliminated — for example, with complete and conscientious sterilization of surgical instruments,” he said. “Bottom line: We shouldn’t put amyloid-beta into people’s brains, either accidentally or on purpose, and appropriate measures should be in place to ensure that doesn’t happen.”

The study was supported by the Medical Research Council, the National Institute for Health and Care Research (NIHR), the NIHR University College of London Hospital Biomedical Research Centre, Alzheimer’s Research UK, and the Stroke Association. Dr. Collinge is a shareholder and director of D-Gen, Ltd., an academic spin-out company working in the field of prion disease diagnosis, decontamination and therapeutics. Dr. Jucker and Dr. Walker report no conflicts of interest. 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>166741</fileName> <TBEID>0C04E498.SIG</TBEID> <TBUniqueIdentifier>MD_0C04E498</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240129T133026</QCDate> <firstPublished>20240129T133635</firstPublished> <LastPublished>20240129T133635</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240129T133635</CMSDate> <articleSource>FROM NATURE MEDICINE</articleSource> <facebookInfo/> <meetingNumber/> <byline>K. W. Burton</byline> <bylineText>KELLI WHITLOCK BURTON</bylineText> <bylineFull>KELLI WHITLOCK BURTON</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>Investigators say they are the first known cases of medically acquired AD in living people, but outside experts say the findings should be interpreted cautiousl</metaDescription> <articlePDF/> <teaserImage/> <title>First Cases of Medically Acquired Alzheimer’s Disease Reported</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>fp</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>im</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> </publications_g> <publications> <term>15</term> <term>21</term> <term canonical="true">22</term> </publications> <sections> <term canonical="true">39313</term> </sections> <topics> <term canonical="true">180</term> <term>258</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>First Cases of Medically Acquired Alzheimer’s Disease Reported</title> <deck/> </itemMeta> <itemContent> <p>Five people in the United Kingdom have been diagnosed with <span class="Hyperlink"><a href="https://emedicine.medscape.com/article/1134817-overview">Alzheimer’s disease</a></span> resulting from a medical treatment they received decades earlier, new research shows. </p> <p><span class="tag metaDescription">Investigators say they are the first known cases of medically acquired AD in living people, but outside experts say the findings should be interpreted cautiously.</span><br/><br/>The individuals received treatment as children with human growth hormone extracted from pituitary glands of cadavers (c-hGH). Between 1958-1985, an estimated 30,000 people worldwide, mostly children, were treated with c-hGH for genetic disorders and growth hormone deficiencies. <br/><br/>The therapy was halted in 1985 after three patients in the US who received the treatment later died of Creutzfeldt-Jakob disease (CJD) transmitted through batches of c-hGH that were contaminated with disease-causing prions. <br/><br/>The new study builds on the investigators’ earlier work that showed the batches of c-hGH also contained amyloid-beta protein and that the protein could be transmitted decades later. These five cases were referred to or reviewed by researchers and clinicians at a prion clinic led by one of the lead researchers.<br/><br/>There are no reports of amyloid-beta transmission through any other medical or surgical procedures, researchers stress, and there is no evidence that amyloid-beta can be passed on during routine patient care or in daily activities. <br/><br/>“However, the recognition of transmission of amyloid-beta pathology in these rare situations should lead us to review measures to prevent accidental transmission via other medical or surgical procedures, in order to prevent such cases occurring in future,” lead author John Collinge, MD, director of the University of College London Institute of Prion Diseases, London, England, and leader of the UK’s National Prion Clinic, said in a press release. <br/><br/>“Importantly, our findings also suggest that Alzheimer’s and some other neurological conditions share similar disease processes to CJD, and this may have important implications for understanding and treating Alzheimer’s disease in the future,” Dr. Collinge continued.<br/><br/>The findings were <span class="Hyperlink"><a href="https://www.nature.com/articles/s41591-023-02729-2">published online</a></span> January 29 in <em>Nature Medicine</em><span class="Hyperlink">.</span> <br/><br/></p> <h2>Building on Earlier Work</h2> <p>The research builds on investigators’ <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/850864">previous 2015 work</a></span> that found archived samples of c-hGH were also contaminated with amyloid-beta protein. In 2018, mouse studies showed that c-hGH samples stored for decades could still transmit amyloid-beta via injection. </p> <p>Researchers said the findings suggested that individuals exposed to contaminated c-hGH who did not die from CJD might eventually develop AD.<br/><br/>Patients in the new study developed neurological symptoms consistent with AD between the ages of 38 and 55 years. The individual cases were either referred to or reviewed by experts in the National Prion Clinic in the UK between 2017 and 2022. The clinic coordinates the National Prion Monitoring Cohort, a longitudinal study of individuals with confirmed prion diseases. <br/><br/>Of the eight cases, three were diagnosed with AD before referral to the clinic; two others met criteria for an AD diagnosis; and three did not meet the criteria. Three of the patients — two of whom had AD — are now deceased. <br/><br/>All patients in the study received c-hGH prepared using a method called Wilhelmi or Hartree-modified Wilhelmi preparation (HWP).<br/><br/>Biomarker analyses confirmed the AD diagnosis in two patients. Other cases showed either progressive brain volume loss on brain imaging or elevated cerebrospinal fluid total tau and phosphorylated tau, or evidence of amyloid-beta deposits on autopsy. <br/><br/></p> <h2>‘Potentially Transmissible’</h2> <p>The cases offered diverse presentations. Some were not symptomatic and some failed to meet current diagnostic criteria for sporadic Alzheimer’s disease. Treatment duration and frequency differed among those in the study, as did their age at treatment onset and completion. That and other factors could contribute to the diverse phenotype recorded in individuals, investigators note. </p> <p>Investigators examined and ruled out other factors that might explain the individuals’ cognitive symptoms, including childhood <span class="Hyperlink"><a href="https://emedicine.medscape.com/article/1180709-overview">intellectual disability</a></span>, which has been linked to dementia risk, the underlying condition that prompted their treatment with c-hGH, growth hormone deficiency, and cranial radiotherapy, which four of the individuals had received. They also ruled out inherited disease in all five of the cases with samples available for testing. <br/><br/>“Taken together, the only factor common to all of the patients whom we describe is treatment with the HWP subtype of c-hGH,” the authors write. “Given the strong experimental evidence for A-beta transmission from relevant archived HWP c-hGH batches, we conclude that this is the most plausible explanation for the findings observed.”<br/><br/>Investigators say the findings show that, like other prion diseases, AD has three etiologies: sporadic, inherited, and rare acquired forms, or iatrogenic AD. <br/><br/>“The clinical syndrome developed by these individuals can, therefore, be termed iatrogenic Alzheimer’s disease, and Alzheimer’s disease should now be recognized as a potentially transmissible disorder,” the authors write. <br/><br/>“Our cases suggest that, similarly to what is observed in human prion diseases, iatrogenic forms of Alzheimer’s disease differ phenotypically from sporadic and inherited forms, with some individuals remaining asymptomatic despite exposure to A-beta seeds due to protective factors that, at present, are unknown,” they continue<br/><br/></p> <h2>‘Measure of Skepticism’</h2> <p>In an accompanying editorial, Mathias Jucker, PhD, of the Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany, and Lary C. Walker, PhD, in the Department of Neurology at Emory University, Atlanta, write that the findings should be considered “with a measure of skepticism.”</p> <p>“The cases presented are diverse and complicated; the individuals had undergone a variety of medical interventions for various disorders earlier in life, and it is difficult to exclude a contribution of these circumstances to the complex disease phenotypes that appeared many years later,” they write. <br/><br/>However, they continue, “there is good reason to take the findings seriously.”<br/><br/>“From a practical standpoint, this report reinforces the potential of amyloid-beta seeds as targets for early prevention, and it underscores the importance of informed caution in the preparation of surgical instruments, handling of tissues, and implementation of therapeutic biologics, particularly those derived from human sources,” Dr. Jucker and Dr. Walker write. <br/><br/>Commenting on the findings for this news organization, Christopher Weber, PhD, director of global science initiatives for the Alzheimer’s Association, says the idea that amyloid-beta is transmissible between individuals has been shown before. <br/><br/>“We’ve known for a long time that it is possible to create abnormal amyloid buildup — similar to that seen in Alzheimer’s – in the brain of an animal by injecting it with amyloid-beta. We also transfer human Alzheimer’s genes into animals to initiate abnormal, Alzheimer’s-like processes in their brains,” he said. “Thus, the idea that amyloid is transferable between individuals is not so novel as implied in the new paper.”<br/><br/>However, the study does highlight the importance of safety measures to prevent the accidental transmission of amyloid-beta, Weber added. <br/><br/>“It is a reasonable and actionable caution that the scientific and clinical communities must understand the possible risks and ensure that all methods of transmission are eliminated — for example, with complete and conscientious sterilization of surgical instruments,” he said. “Bottom line: We shouldn’t put amyloid-beta into people’s brains, either accidentally or on purpose, and appropriate measures should be in place to ensure that doesn’t happen.”<br/><br/>The study was supported by the Medical Research Council, the National Institute for Health and Care Research (NIHR), the NIHR University College of London Hospital Biomedical Research Centre, Alzheimer’s Research UK, and the Stroke Association. Dr. Collinge is a shareholder and director of D-Gen, Ltd., an academic spin-out company working in the field of prion disease diagnosis, decontamination and therapeutics. Dr. Jucker and Dr. Walker report no conflicts of interest.<span class="end"/> </p> <p> <em>A version of this article appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/first-cases-medically-acquired-alzheimers-disease-reported-2024a10001ys">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> <p>Small study suggests link between receiving human growth hormone as children and developing Alzheimer’s later in life.</p> </itemContent> </newsItem> </itemSet></root>
Article Source

FROM NATURE MEDICINE

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article