LayerRx Mapping ID
463
Slot System
Featured Buckets
Featured Buckets Admin
Reverse Chronological Sort
Allow Teaser Image
Medscape Lead Concept
846

Few Cancer Survivors Meet ACS Nutrition, Exercise Guidelines

Article Type
Changed
Mon, 04/29/2024 - 17:35

 

TOPLINE:

A recent survey-based study found that only 4% of cancer survivors reported adhering to all four American Cancer Society (ACS) nutrition and physical activity guidelines, which include maintaining a healthy weight and diet, avoiding alcohol, and exercising regularly.

METHODOLOGY:

  • The ACS has published nutrition and exercise guidelines for cancer survivors, which include recommendations to maintain a healthy weight and diet, cut out alcohol, and participate in regular physical activities. Engaging in these behaviors is associated with longer survival among cancer survivors, but whether survivors follow these nutrition and activity recommendations has not been systematically tracked.
  • Researchers evaluated data on 10,020 individuals (mean age, 64.2 years) who had completed cancer treatment. Data came from the Behavioral Risk Factor Surveillance System telephone-based survey administered in 2017, 2019, and 2021, which represents 2.7 million cancer survivors.
  • The researchers estimated survivors’ adherence to guidelines across four domains: Weight, physical activity, fruit and vegetable consumption, and alcohol intake. Factors associated with adherence were also evaluated.
  • Overall, 9,121 survivors (91%) completed questionnaires for all four domains.

TAKEAWAY:

Only 4% of patients (365 of 9121) followed ACS guidelines in all four categories.

When assessing adherence to each category, the researchers found that 72% of cancer survivors reported engaging in recommended levels of physical activity, 68% maintained a nonobese weight, 50% said they did not consume alcohol, and 12% said they consumed recommended quantities of fruits and vegetables.

Compared with people in the general population, cancer survivors generally engaged in fewer healthy behaviors than those who had never been diagnosed with cancer.

The authors identified certain factors associated with greater guideline adherence, including female sex, older age, Black (vs White) race, and higher education level (college graduate).

IN PRACTICE:

This study highlights a potential “gap between published guidelines regarding behavioral modifications for cancer survivors and uptake of these behaviors,” the authors wrote, adding that “it is essential for oncologists and general internists to improve widespread and systematic counseling on these guidelines to improve uptake of healthy behaviors in this vulnerable patient population.”

SOURCE:

This work, led by Carter Baughman, MD, from the Division of Internal Medicine at Beth Israel Deaconess Medical Center, Boston, Massachusetts, was published online in JAMA Oncology.

LIMITATIONS:

The authors reported several study limitations, most notably that self-reported data may introduce biases.

DISCLOSURES:

The study funding source was not reported. One author received grants from the US Highbush Blueberry Council outside the submitted work. No other disclosures were reported.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

A recent survey-based study found that only 4% of cancer survivors reported adhering to all four American Cancer Society (ACS) nutrition and physical activity guidelines, which include maintaining a healthy weight and diet, avoiding alcohol, and exercising regularly.

METHODOLOGY:

  • The ACS has published nutrition and exercise guidelines for cancer survivors, which include recommendations to maintain a healthy weight and diet, cut out alcohol, and participate in regular physical activities. Engaging in these behaviors is associated with longer survival among cancer survivors, but whether survivors follow these nutrition and activity recommendations has not been systematically tracked.
  • Researchers evaluated data on 10,020 individuals (mean age, 64.2 years) who had completed cancer treatment. Data came from the Behavioral Risk Factor Surveillance System telephone-based survey administered in 2017, 2019, and 2021, which represents 2.7 million cancer survivors.
  • The researchers estimated survivors’ adherence to guidelines across four domains: Weight, physical activity, fruit and vegetable consumption, and alcohol intake. Factors associated with adherence were also evaluated.
  • Overall, 9,121 survivors (91%) completed questionnaires for all four domains.

TAKEAWAY:

Only 4% of patients (365 of 9121) followed ACS guidelines in all four categories.

When assessing adherence to each category, the researchers found that 72% of cancer survivors reported engaging in recommended levels of physical activity, 68% maintained a nonobese weight, 50% said they did not consume alcohol, and 12% said they consumed recommended quantities of fruits and vegetables.

Compared with people in the general population, cancer survivors generally engaged in fewer healthy behaviors than those who had never been diagnosed with cancer.

The authors identified certain factors associated with greater guideline adherence, including female sex, older age, Black (vs White) race, and higher education level (college graduate).

IN PRACTICE:

This study highlights a potential “gap between published guidelines regarding behavioral modifications for cancer survivors and uptake of these behaviors,” the authors wrote, adding that “it is essential for oncologists and general internists to improve widespread and systematic counseling on these guidelines to improve uptake of healthy behaviors in this vulnerable patient population.”

SOURCE:

This work, led by Carter Baughman, MD, from the Division of Internal Medicine at Beth Israel Deaconess Medical Center, Boston, Massachusetts, was published online in JAMA Oncology.

LIMITATIONS:

The authors reported several study limitations, most notably that self-reported data may introduce biases.

DISCLOSURES:

The study funding source was not reported. One author received grants from the US Highbush Blueberry Council outside the submitted work. No other disclosures were reported.

A version of this article appeared on Medscape.com.

 

TOPLINE:

A recent survey-based study found that only 4% of cancer survivors reported adhering to all four American Cancer Society (ACS) nutrition and physical activity guidelines, which include maintaining a healthy weight and diet, avoiding alcohol, and exercising regularly.

METHODOLOGY:

  • The ACS has published nutrition and exercise guidelines for cancer survivors, which include recommendations to maintain a healthy weight and diet, cut out alcohol, and participate in regular physical activities. Engaging in these behaviors is associated with longer survival among cancer survivors, but whether survivors follow these nutrition and activity recommendations has not been systematically tracked.
  • Researchers evaluated data on 10,020 individuals (mean age, 64.2 years) who had completed cancer treatment. Data came from the Behavioral Risk Factor Surveillance System telephone-based survey administered in 2017, 2019, and 2021, which represents 2.7 million cancer survivors.
  • The researchers estimated survivors’ adherence to guidelines across four domains: Weight, physical activity, fruit and vegetable consumption, and alcohol intake. Factors associated with adherence were also evaluated.
  • Overall, 9,121 survivors (91%) completed questionnaires for all four domains.

TAKEAWAY:

Only 4% of patients (365 of 9121) followed ACS guidelines in all four categories.

When assessing adherence to each category, the researchers found that 72% of cancer survivors reported engaging in recommended levels of physical activity, 68% maintained a nonobese weight, 50% said they did not consume alcohol, and 12% said they consumed recommended quantities of fruits and vegetables.

Compared with people in the general population, cancer survivors generally engaged in fewer healthy behaviors than those who had never been diagnosed with cancer.

The authors identified certain factors associated with greater guideline adherence, including female sex, older age, Black (vs White) race, and higher education level (college graduate).

IN PRACTICE:

This study highlights a potential “gap between published guidelines regarding behavioral modifications for cancer survivors and uptake of these behaviors,” the authors wrote, adding that “it is essential for oncologists and general internists to improve widespread and systematic counseling on these guidelines to improve uptake of healthy behaviors in this vulnerable patient population.”

SOURCE:

This work, led by Carter Baughman, MD, from the Division of Internal Medicine at Beth Israel Deaconess Medical Center, Boston, Massachusetts, was published online in JAMA Oncology.

LIMITATIONS:

The authors reported several study limitations, most notably that self-reported data may introduce biases.

DISCLOSURES:

The study funding source was not reported. One author received grants from the US Highbush Blueberry Council outside the submitted work. No other disclosures were reported.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>167860</fileName> <TBEID>0C04FD2C.SIG</TBEID> <TBUniqueIdentifier>MD_0C04FD2C</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240426T151917</QCDate> <firstPublished>20240426T152032</firstPublished> <LastPublished>20240426T152032</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240426T152032</CMSDate> <articleSource/> <facebookInfo/> <meetingNumber/> <byline>Deepa Varma</byline> <bylineText>DEEPA VARMA</bylineText> <bylineFull>DEEPA VARMA</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>A recent survey-based study found that only 4% of cancer survivors reported adhering to all four American Cancer Society (ACS) nutrition and physical activity g</metaDescription> <articlePDF/> <teaserImage/> <teaser>Researchers estimate more than 9,000 survivors’ adherence to weight, physical activity, fruit and vegetable consumption, and alcohol intake guidelines.</teaser> <title>Few Cancer Survivors Meet ACS Nutrition, Exercise Guidelines</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>oncr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>hemn</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>chph</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>fp</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>im</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>ob</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>skin</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>GIHOLD</publicationCode> <pubIssueName>January 2014</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> </publications_g> <publications> <term canonical="true">31</term> <term>18</term> <term>6</term> <term>15</term> <term>21</term> <term>23</term> <term>22</term> <term>13</term> </publications> <sections> <term canonical="true">27970</term> <term>39313</term> <term>86</term> </sections> <topics> <term>270</term> <term canonical="true">280</term> <term>198</term> <term>61821</term> <term>59244</term> <term>67020</term> <term>214</term> <term>217</term> <term>221</term> <term>238</term> <term>240</term> <term>242</term> <term>244</term> <term>39570</term> <term>245</term> <term>31848</term> <term>292</term> <term>178</term> <term>179</term> <term>181</term> <term>59374</term> <term>196</term> <term>197</term> <term>37637</term> <term>233</term> <term>243</term> <term>250</term> <term>49434</term> <term>303</term> <term>263</term> <term>192</term> <term>256</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Few Cancer Survivors Meet ACS Nutrition, Exercise Guidelines</title> <deck/> </itemMeta> <itemContent> <h2>TOPLINE:</h2> <p> <span class="tag metaDescription">A recent survey-based study found that only 4% of cancer survivors reported adhering to all four American Cancer Society (ACS) nutrition and physical activity guidelines, which include maintaining a healthy weight and diet, avoiding alcohol, and exercising regularly.</span> </p> <h2>METHODOLOGY:</h2> <ul class="body"> <li>The ACS has published nutrition and exercise guidelines for cancer survivors, which include recommendations to maintain a healthy weight and diet, cut out alcohol, and participate in regular physical activities. Engaging in these behaviors is associated with longer survival among cancer survivors, but whether survivors follow these nutrition and activity recommendations has not been systematically tracked.</li> <li>Researchers evaluated data on 10,020 individuals (mean age, 64.2 years) who had completed cancer treatment. Data came from the Behavioral Risk Factor Surveillance System telephone-based survey administered in 2017, 2019, and 2021, which represents 2.7 million cancer survivors.</li> <li>The researchers estimated survivors’ adherence to guidelines across four domains: Weight, physical activity, fruit and vegetable consumption, and alcohol intake. Factors associated with adherence were also evaluated.</li> <li>Overall, 9,121 survivors (91%) completed questionnaires for all four domains.</li> </ul> <h2>TAKEAWAY:</h2> <p>Only 4% of patients (365 of 9121) followed ACS guidelines in all four categories.<br/><br/>When assessing adherence to each category, the researchers found that 72% of cancer survivors reported engaging in recommended levels of physical activity, 68% maintained a nonobese weight, 50% said they did not consume alcohol, and 12% said they consumed recommended quantities of fruits and vegetables.<br/><br/>Compared with people in the general population, cancer survivors generally engaged in fewer healthy behaviors than those who had never been diagnosed with cancer.<br/><br/>The authors identified certain factors associated with greater guideline adherence, including female sex, older age, Black (vs White) race, and higher education level (college graduate).</p> <h2>IN PRACTICE:</h2> <p>This study highlights a potential “gap between published guidelines regarding behavioral modifications for cancer survivors and uptake of these behaviors,” the authors wrote, adding that “it is essential for oncologists and general internists to improve widespread and systematic counseling on these guidelines to improve uptake of healthy behaviors in this vulnerable patient population.”</p> <h2>SOURCE:</h2> <p>This work, led by Carter Baughman, MD, from the Division of Internal Medicine at Beth Israel Deaconess Medical Center, Boston, Massachusetts, was published <span class="Hyperlink"><a href="https://jamanetwork.com/journals/jamaoncology/fullarticle/2817661">online</a></span> in <em>JAMA Oncology</em>.</p> <h2>LIMITATIONS:</h2> <p>The authors reported several study limitations, most notably that self-reported data may introduce biases.</p> <h2>DISCLOSURES:</h2> <p>The study funding source was not reported. One author received grants from the US Highbush Blueberry Council outside the submitted work. No other disclosures were reported.<span class="end"/></p> <p> <em>A version of this article appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/few-cancer-survivors-meet-acs-nutrition-exercise-guidelines-2024a10007sl?src=">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

What’s Driving the Higher Breast Cancer Death Rate in Black Women?

Article Type
Changed
Wed, 04/24/2024 - 12:12

 

More women today are surviving breast cancer if it’s caught early, largely because of better screening and more effective and targeted treatments.

However, not everyone has benefited equitably from this progress. Critical gaps in breast cancer outcomes and survival remain for women in racial and ethnic minority groups.

Black women for instance, have a 41% higher death rate from breast cancer compared with White patients. They also have a greater incidence of aggressive disease like triple-negative breast cancer. Native American and Hispanic women, meanwhile, are more likely to be diagnosed with breast cancer at an earlier age than White women and experience more aggressive breast cancers.

In 2023, Farhad Islami, MD, PhD, and his team published an updated analysis of racial/ethnic and socioeconomic disparities in cancer trends based on data from 2014 to 2020. The analysis found that Black women in particular, were the least likely to have an early-stage diagnosis of breast cancer. Localized‐stage breast cancer was diagnosed in 57% of Black women versus 68% of White women.

Islami_Farhad_web.jpg
Dr. Farhad Islami

“Despite substantial progress in cancer prevention, early detection, and treatments, the burden of cancer remains greater among populations that have been historically marginalized, including people of color, people with lower socioeconomic status, and people living in nonmetropolitan areas,” said Dr. Islami, who is senior scientific director of cancer disparity research in the Surveillance & Health Equity Science Department at the American Cancer Society.

The reasons behind outcomes disparities in breast cancer are complex, making solutions challenging, say experts researching racial differences in cancer outcomes.

While social determinants of health (SDH) seem to be drivers of higher breast cancer mortality in Black women, biological differences between Black and White women are also linked to poorer outcomes in Black women with breast cancer, new studies suggest. Among the findings of this research is that breast cancer tests may be contributing to the disparities and misguiding care for some patients of color.
 

SDH and Screening Rates Differences By Race

A range of factors contribute to racial and ethnic disparities in breast cancer outcomes, said Pamela Ganschow, MD, an associate professor in the Department of Internal Medicine at the University of Illinois Cancer Center in Chicago and part of the university’s Cancer Prevention and Control research program. These include socioeconomic status, access to timely and high-quality care across the cancer control continuum, cultural beliefs, differences in genetic makeup and tumor biology, as well as system biases, such as implicit biases and systemic racism, Dr. Ganschow said.

Dr. Islami adds that gaps in access to cancer prevention, early detection, and treatment are largely rooted in fundamental inequities in social determinants of health (SDH), such as whether a patient has safe housing, transportation, education, job opportunities, income, access to nutritious foods, and language and literacy skills, among others.

Dr. Islami’s analysis, for example, shows that people of color are generally more likely to have lower educational attainment and to experience poverty, food insecurity, and housing insecurity compared with White people. Among people aged 18-64 years, the age-adjusted proportion of individuals with no health insurance in 2021 was also higher among Black (13.7%), American Indian/Alaskan Native (18.7%), and Hispanic (28.7%) patients than among White (7.8%) or Asian (5.9%) people, according to the report.

Competing needs can also get in the way of prioritizing cancer screenings, especially for patients in lower socio-economic populations, Dr. Ganschow said.

Ganschow_Pamela_CHICAGO_web.JPG
Dr. Pamela Ganschow


“You’ve got people who are working a job or three jobs, just to make ends meet for their family and can’t necessarily take time off to get that done,” she said. “Nor is it prioritized in their head because they’ve got to put a meal on the table.”

But the racial disparities between Black and White women, at least, are not clearly explained by differences between the screening rates..

Of patients who received mammograms 76% were White and 79% were Black, according to another recent study coauthored by Dr. Islami. While Black women appear to have the highest breast cancer screening rates, some data suggest such rates are being overreported.

Lower screening rates were seen in American Indian/Alaska Native (59%), Asian (67%), and Hispanic women (74%).
 

 

 

Biological Differences, Bad Testing Recommendations May Contribute to Poor Outcomes

Differences in biology may be one overlooked internal driver of lower breast cancer survival in Black women.

Researchers at Sanford Burnham Prebys in La Jolla, California, recently analyzed the breast cells of White and Black women, finding significant molecular differences that may be contributing to higher breast cancer mortality rates in Black women.

Investigators analyzed both healthy tissue and tumor tissue from 185 Black women and compared the samples to that of White women. They discovered differences among Black and White women in the way their DNA repair genes are expressed, both in healthy breast tissue and in tumors positive for estrogen receptor breast cancer. Molecular differences were also present in the cellular signals that control how fast cells, including cancer cells, grow.

DNA repair is part of normal cellular function and helps cells recover from damage that can occur during DNA replication or in response to external factors, such as stress.

“One of the first lines of defense, to prevent the cell from becoming a tumor are DNA damage repair pathways,” said Svasti Haricharan, PhD, a coauthor of the study and an assistant professor at Sanford Burnham Prebys. “We know there are many different DNA damage repair pathways that respond to different types of DNA damage. What we didn’t know was that, even in our normal cells, based on your race and ethnicity, you have different levels of DNA repair proteins.”

Haricharan_Svasti_CALIF_web.jpg
Dr. Svasti Haricharan


The study found that many of the proteins associated with endocrine resistance and poor outcomes in breast cancer patients are differently regulated in Black women compared with White woman. These differences contribute to resistance to standard endocrine therapy, Dr. Haricharan said.

“Because we never studied the biology in Black woman, it was just assumed that across all demographics, it must be the same,” she said. “We are not even accounting for the possibility there are likely intrinsic differences for how you will respond to an endocrine treatment.”

Testing and treatment may also be playing a role in worse breast cancer outcomes for Black women.

In an analysis of 73,363 women with early-stage, estrogen receptor–positive breast cancer, investigators found that a common test used to decide the treatment course for patients may be leading to bad recommendations for Black women.

The test, known as the 21-gene breast recurrence score, is the most commonly ordered biomarker test used to guide doctor’s recommendations for patients with estrogen receptor–positive breast cancer, the most common form of cancer in Black women, representing about 70%-80% of cases.

The test helps physicians identify which patients are good candidates for chemo, but the test may underestimate the benefit of chemo for Black women. It ranks some Black women as unlikely to benefit from chemo, when they actually would have benefited, according to the January 2024 study, published in the Journal of the National Comprehensive Cancer Network.

The test gives a score of zero to 100, explains Kent Hoskins, MD, oncology service line medical director at the University of Illinois (UI) Health and director of the Familial Breast Cancer Clinic at UI Health, both in Chicago. The higher the score, the higher the risk and the greater the benefit of chemotherapy. A patient is either above the cut-off score and receives chemo, or is below the cut-off score and does not. In the analysis, investigators found that Black women start improving with chemo at a lower score than White women do.

Hoskins_Kent_CHICAGO_web.jpg
Dr. Kent Hoskins


Dr. Hoskins said the results raise questions about whether the biomarker test should be modified to be more applicable to Black women, whether other tests should be used, or if physicians should judge cut-off scores differently, depending on race.
 

 

 

How Neighborhood Impacts Breast Cancer, Death Rates

Living in a disadvantaged neighborhood also lowers breast cancer survival, according to new research. A disadvantaged neighborhood is generally defined as a location associated with higher concentrations of poverty, higher rates of unemployment, and less access to health care, quality housing, food, and community resources, according to the Centers for Disease Control and Prevention.

Authors of a study published in JAMA Network Open on April 18 identified 350,824 patients with breast cancer. Of these, 41,519 (11.8%) were Hispanic, 39,631 (11.3%) were non-Hispanic Black, and 234,698 (66.9%) were non-Hispanic White. Investigators divided the patients into five groups representing the lowest to highest neighborhood socioeconomic indices using the Yost Index. (The Yost Index is used by the National Cancer Institute for cancer surveillance and is based on variables such as household income, home value, median rent, percentage below 150% of the poverty line, education, and unemployment.)

Of the Black and Hispanic patients in the study, the highest proportions of both demographics lived in the most disadvantaged neighborhoods. (16,141 Black patients [30.9%]) and 10,168 Hispanic patients [19.5%]). Although 45% of White patients also fell into that same category, the highest proportion of White patients in the study lived in the most advantaged neighborhoods (66,529 patients [76.2%]).

Findings showed patients in the most disadvantaged neighborhoods had the highest proportion of triple-negative breast cancer. Patients in this group also had the lowest proportion of patients who completed surgery and radiation, and the highest proportion of patients who received chemotherapy, compared with all other neighborhood groups. The most advantaged neighborhoods group had higher proportions of localized-stage cancer, a higher proportion of patients who underwent surgery and radiation, and the lowest proportion of patients receiving chemotherapy treatment.

Patients in the most disadvantaged neighborhoods also had the highest risk of mortality (hazard ratio [HR,] 1.53; 95% CI, 1.48-1.59; P less than .001) compared with patients living in the most advantaged neighborhoods. Non-Hispanic Black patients in particular, had the highest risk of mortality, compared with non-Hispanic White patients (HR, 1.16; 95% CI, 1.13-1.20; P less than .001).

Authors wrote that the findings suggest neighborhood disadvantage is independently associated with shorter survival in patients with breast cancer, even after controlling for individual-level factors, tumor characteristics, and treatment.

“To address these residual disparities associated with neighborhood disadvantage, research must focus on which components of the built environment influence outcomes,” the authors said.

Another recent study also found correlations among where breast cancer patients lived and how they fared with the disease.

Jasmine M. Miller-Kleinhenz, PhD, an assistant professor at University of Mississippi Medical Center in Jackson, studied how historical redlining impacts breast cancer development and outcomes in her research published in JAMA Network Open, earlier this year. Redlining refers to the practice of denying people access to credit because of where they live. Historically, mortgage lenders widely redlined neighborhoods with predominantly Black residents. The 1968 Fair Housing Act outlawed racially motivated redlining, but consequences from historical redlining still exist.

Miller_Kleinhenz_Jasmine_MS_web.jpg
Dr. Jasmine M. Miller-Kleinhenz


Dr. Miller-Kleinhenz and her colleagues analyzed a cohort of 1764 women diagnosed with breast cancer between January 2010 and December 2017, who were followed up through December 2019. Investigators accessed the cohort based on three exposures: historic redlining (HRL), contemporary mortgage discrimination (CMD), and persistent mortgage discrimination (PMD). Contemporary mortgage discrimination refers to current-day discriminatory mortgage practices and persistent mortgage discrimination refers to neighborhoods that have experienced both HRL and CMD.

Findings showed that Black women living in historical redlined areas had increased odds of being diagnosed with aggressive forms of breast cancer, while White women in redlined areas had increased odds of late-stage diagnosis.

White women exposed to persistent mortgage discrimination were twice as likely to die of breast cancer, compared with their White counterparts living in areas without historical redlining or contemporary mortgage discrimination, the study found.

That is not to say that Black women did not have an increased risk of breast cancer mortality, Dr. Miller-Kleinhenz explained. Black women had a more than threefold elevated risk of breast cancer mortality compared with White women no matter where they lived, according to the findings.

“These results were surprising because it is showing that while neighborhood conditions might be a major driver of breast cancer mortality in White women, there are factors beyond the neighborhood that are additional drivers that are contributing to poor outcomes in Black women,” she said.
 

 

 

Hope for Improved Outcomes, Higher Survival Rates

Investigators hope the findings of all of this new research lead to better, more targeted treatments and, in turn, improved outcomes.

Dr. Haricharan is optimistic about the improvement of breast cancer outcomes as more is learned about the biology of Black patients and other non-White patients.

There is a growing effort to include more data from minoritized populations in breast cancer research studies, Dr. Haricharan said, and she foresees associated changes to clinical protocols in the future. Her own team is working on creating larger data sets that are more representative of non-White patients to further analyze the differences found in their prior study.

“I think there’s this understanding that, until we have data sets that are more representative, we really are catering to [only one] population in terms of our diagnostic and therapeutic technological advances,” she said.

The American Cancer Society meanwhile, is launching a new initiative in May that aims to collect more health data from Black women to ultimately develop more effective cancer interventions. VOICES of Black Women will focus on collecting and studying health data from Black women through online surveys. The society’s goal is to enroll at least 100,000 Black women in the United States between ages 25 and 55.

Dr. Miller-Kleinhenz called the initiative “an important step to starting to research and answer some of these lingering questions about why there continue to be breast cancer disparities.”

Publications
Topics
Sections

 

More women today are surviving breast cancer if it’s caught early, largely because of better screening and more effective and targeted treatments.

However, not everyone has benefited equitably from this progress. Critical gaps in breast cancer outcomes and survival remain for women in racial and ethnic minority groups.

Black women for instance, have a 41% higher death rate from breast cancer compared with White patients. They also have a greater incidence of aggressive disease like triple-negative breast cancer. Native American and Hispanic women, meanwhile, are more likely to be diagnosed with breast cancer at an earlier age than White women and experience more aggressive breast cancers.

In 2023, Farhad Islami, MD, PhD, and his team published an updated analysis of racial/ethnic and socioeconomic disparities in cancer trends based on data from 2014 to 2020. The analysis found that Black women in particular, were the least likely to have an early-stage diagnosis of breast cancer. Localized‐stage breast cancer was diagnosed in 57% of Black women versus 68% of White women.

Islami_Farhad_web.jpg
Dr. Farhad Islami

“Despite substantial progress in cancer prevention, early detection, and treatments, the burden of cancer remains greater among populations that have been historically marginalized, including people of color, people with lower socioeconomic status, and people living in nonmetropolitan areas,” said Dr. Islami, who is senior scientific director of cancer disparity research in the Surveillance & Health Equity Science Department at the American Cancer Society.

The reasons behind outcomes disparities in breast cancer are complex, making solutions challenging, say experts researching racial differences in cancer outcomes.

While social determinants of health (SDH) seem to be drivers of higher breast cancer mortality in Black women, biological differences between Black and White women are also linked to poorer outcomes in Black women with breast cancer, new studies suggest. Among the findings of this research is that breast cancer tests may be contributing to the disparities and misguiding care for some patients of color.
 

SDH and Screening Rates Differences By Race

A range of factors contribute to racial and ethnic disparities in breast cancer outcomes, said Pamela Ganschow, MD, an associate professor in the Department of Internal Medicine at the University of Illinois Cancer Center in Chicago and part of the university’s Cancer Prevention and Control research program. These include socioeconomic status, access to timely and high-quality care across the cancer control continuum, cultural beliefs, differences in genetic makeup and tumor biology, as well as system biases, such as implicit biases and systemic racism, Dr. Ganschow said.

Dr. Islami adds that gaps in access to cancer prevention, early detection, and treatment are largely rooted in fundamental inequities in social determinants of health (SDH), such as whether a patient has safe housing, transportation, education, job opportunities, income, access to nutritious foods, and language and literacy skills, among others.

Dr. Islami’s analysis, for example, shows that people of color are generally more likely to have lower educational attainment and to experience poverty, food insecurity, and housing insecurity compared with White people. Among people aged 18-64 years, the age-adjusted proportion of individuals with no health insurance in 2021 was also higher among Black (13.7%), American Indian/Alaskan Native (18.7%), and Hispanic (28.7%) patients than among White (7.8%) or Asian (5.9%) people, according to the report.

Competing needs can also get in the way of prioritizing cancer screenings, especially for patients in lower socio-economic populations, Dr. Ganschow said.

Ganschow_Pamela_CHICAGO_web.JPG
Dr. Pamela Ganschow


“You’ve got people who are working a job or three jobs, just to make ends meet for their family and can’t necessarily take time off to get that done,” she said. “Nor is it prioritized in their head because they’ve got to put a meal on the table.”

But the racial disparities between Black and White women, at least, are not clearly explained by differences between the screening rates..

Of patients who received mammograms 76% were White and 79% were Black, according to another recent study coauthored by Dr. Islami. While Black women appear to have the highest breast cancer screening rates, some data suggest such rates are being overreported.

Lower screening rates were seen in American Indian/Alaska Native (59%), Asian (67%), and Hispanic women (74%).
 

 

 

Biological Differences, Bad Testing Recommendations May Contribute to Poor Outcomes

Differences in biology may be one overlooked internal driver of lower breast cancer survival in Black women.

Researchers at Sanford Burnham Prebys in La Jolla, California, recently analyzed the breast cells of White and Black women, finding significant molecular differences that may be contributing to higher breast cancer mortality rates in Black women.

Investigators analyzed both healthy tissue and tumor tissue from 185 Black women and compared the samples to that of White women. They discovered differences among Black and White women in the way their DNA repair genes are expressed, both in healthy breast tissue and in tumors positive for estrogen receptor breast cancer. Molecular differences were also present in the cellular signals that control how fast cells, including cancer cells, grow.

DNA repair is part of normal cellular function and helps cells recover from damage that can occur during DNA replication or in response to external factors, such as stress.

“One of the first lines of defense, to prevent the cell from becoming a tumor are DNA damage repair pathways,” said Svasti Haricharan, PhD, a coauthor of the study and an assistant professor at Sanford Burnham Prebys. “We know there are many different DNA damage repair pathways that respond to different types of DNA damage. What we didn’t know was that, even in our normal cells, based on your race and ethnicity, you have different levels of DNA repair proteins.”

Haricharan_Svasti_CALIF_web.jpg
Dr. Svasti Haricharan


The study found that many of the proteins associated with endocrine resistance and poor outcomes in breast cancer patients are differently regulated in Black women compared with White woman. These differences contribute to resistance to standard endocrine therapy, Dr. Haricharan said.

“Because we never studied the biology in Black woman, it was just assumed that across all demographics, it must be the same,” she said. “We are not even accounting for the possibility there are likely intrinsic differences for how you will respond to an endocrine treatment.”

Testing and treatment may also be playing a role in worse breast cancer outcomes for Black women.

In an analysis of 73,363 women with early-stage, estrogen receptor–positive breast cancer, investigators found that a common test used to decide the treatment course for patients may be leading to bad recommendations for Black women.

The test, known as the 21-gene breast recurrence score, is the most commonly ordered biomarker test used to guide doctor’s recommendations for patients with estrogen receptor–positive breast cancer, the most common form of cancer in Black women, representing about 70%-80% of cases.

The test helps physicians identify which patients are good candidates for chemo, but the test may underestimate the benefit of chemo for Black women. It ranks some Black women as unlikely to benefit from chemo, when they actually would have benefited, according to the January 2024 study, published in the Journal of the National Comprehensive Cancer Network.

The test gives a score of zero to 100, explains Kent Hoskins, MD, oncology service line medical director at the University of Illinois (UI) Health and director of the Familial Breast Cancer Clinic at UI Health, both in Chicago. The higher the score, the higher the risk and the greater the benefit of chemotherapy. A patient is either above the cut-off score and receives chemo, or is below the cut-off score and does not. In the analysis, investigators found that Black women start improving with chemo at a lower score than White women do.

Hoskins_Kent_CHICAGO_web.jpg
Dr. Kent Hoskins


Dr. Hoskins said the results raise questions about whether the biomarker test should be modified to be more applicable to Black women, whether other tests should be used, or if physicians should judge cut-off scores differently, depending on race.
 

 

 

How Neighborhood Impacts Breast Cancer, Death Rates

Living in a disadvantaged neighborhood also lowers breast cancer survival, according to new research. A disadvantaged neighborhood is generally defined as a location associated with higher concentrations of poverty, higher rates of unemployment, and less access to health care, quality housing, food, and community resources, according to the Centers for Disease Control and Prevention.

Authors of a study published in JAMA Network Open on April 18 identified 350,824 patients with breast cancer. Of these, 41,519 (11.8%) were Hispanic, 39,631 (11.3%) were non-Hispanic Black, and 234,698 (66.9%) were non-Hispanic White. Investigators divided the patients into five groups representing the lowest to highest neighborhood socioeconomic indices using the Yost Index. (The Yost Index is used by the National Cancer Institute for cancer surveillance and is based on variables such as household income, home value, median rent, percentage below 150% of the poverty line, education, and unemployment.)

Of the Black and Hispanic patients in the study, the highest proportions of both demographics lived in the most disadvantaged neighborhoods. (16,141 Black patients [30.9%]) and 10,168 Hispanic patients [19.5%]). Although 45% of White patients also fell into that same category, the highest proportion of White patients in the study lived in the most advantaged neighborhoods (66,529 patients [76.2%]).

Findings showed patients in the most disadvantaged neighborhoods had the highest proportion of triple-negative breast cancer. Patients in this group also had the lowest proportion of patients who completed surgery and radiation, and the highest proportion of patients who received chemotherapy, compared with all other neighborhood groups. The most advantaged neighborhoods group had higher proportions of localized-stage cancer, a higher proportion of patients who underwent surgery and radiation, and the lowest proportion of patients receiving chemotherapy treatment.

Patients in the most disadvantaged neighborhoods also had the highest risk of mortality (hazard ratio [HR,] 1.53; 95% CI, 1.48-1.59; P less than .001) compared with patients living in the most advantaged neighborhoods. Non-Hispanic Black patients in particular, had the highest risk of mortality, compared with non-Hispanic White patients (HR, 1.16; 95% CI, 1.13-1.20; P less than .001).

Authors wrote that the findings suggest neighborhood disadvantage is independently associated with shorter survival in patients with breast cancer, even after controlling for individual-level factors, tumor characteristics, and treatment.

“To address these residual disparities associated with neighborhood disadvantage, research must focus on which components of the built environment influence outcomes,” the authors said.

Another recent study also found correlations among where breast cancer patients lived and how they fared with the disease.

Jasmine M. Miller-Kleinhenz, PhD, an assistant professor at University of Mississippi Medical Center in Jackson, studied how historical redlining impacts breast cancer development and outcomes in her research published in JAMA Network Open, earlier this year. Redlining refers to the practice of denying people access to credit because of where they live. Historically, mortgage lenders widely redlined neighborhoods with predominantly Black residents. The 1968 Fair Housing Act outlawed racially motivated redlining, but consequences from historical redlining still exist.

Miller_Kleinhenz_Jasmine_MS_web.jpg
Dr. Jasmine M. Miller-Kleinhenz


Dr. Miller-Kleinhenz and her colleagues analyzed a cohort of 1764 women diagnosed with breast cancer between January 2010 and December 2017, who were followed up through December 2019. Investigators accessed the cohort based on three exposures: historic redlining (HRL), contemporary mortgage discrimination (CMD), and persistent mortgage discrimination (PMD). Contemporary mortgage discrimination refers to current-day discriminatory mortgage practices and persistent mortgage discrimination refers to neighborhoods that have experienced both HRL and CMD.

Findings showed that Black women living in historical redlined areas had increased odds of being diagnosed with aggressive forms of breast cancer, while White women in redlined areas had increased odds of late-stage diagnosis.

White women exposed to persistent mortgage discrimination were twice as likely to die of breast cancer, compared with their White counterparts living in areas without historical redlining or contemporary mortgage discrimination, the study found.

That is not to say that Black women did not have an increased risk of breast cancer mortality, Dr. Miller-Kleinhenz explained. Black women had a more than threefold elevated risk of breast cancer mortality compared with White women no matter where they lived, according to the findings.

“These results were surprising because it is showing that while neighborhood conditions might be a major driver of breast cancer mortality in White women, there are factors beyond the neighborhood that are additional drivers that are contributing to poor outcomes in Black women,” she said.
 

 

 

Hope for Improved Outcomes, Higher Survival Rates

Investigators hope the findings of all of this new research lead to better, more targeted treatments and, in turn, improved outcomes.

Dr. Haricharan is optimistic about the improvement of breast cancer outcomes as more is learned about the biology of Black patients and other non-White patients.

There is a growing effort to include more data from minoritized populations in breast cancer research studies, Dr. Haricharan said, and she foresees associated changes to clinical protocols in the future. Her own team is working on creating larger data sets that are more representative of non-White patients to further analyze the differences found in their prior study.

“I think there’s this understanding that, until we have data sets that are more representative, we really are catering to [only one] population in terms of our diagnostic and therapeutic technological advances,” she said.

The American Cancer Society meanwhile, is launching a new initiative in May that aims to collect more health data from Black women to ultimately develop more effective cancer interventions. VOICES of Black Women will focus on collecting and studying health data from Black women through online surveys. The society’s goal is to enroll at least 100,000 Black women in the United States between ages 25 and 55.

Dr. Miller-Kleinhenz called the initiative “an important step to starting to research and answer some of these lingering questions about why there continue to be breast cancer disparities.”

 

More women today are surviving breast cancer if it’s caught early, largely because of better screening and more effective and targeted treatments.

However, not everyone has benefited equitably from this progress. Critical gaps in breast cancer outcomes and survival remain for women in racial and ethnic minority groups.

Black women for instance, have a 41% higher death rate from breast cancer compared with White patients. They also have a greater incidence of aggressive disease like triple-negative breast cancer. Native American and Hispanic women, meanwhile, are more likely to be diagnosed with breast cancer at an earlier age than White women and experience more aggressive breast cancers.

In 2023, Farhad Islami, MD, PhD, and his team published an updated analysis of racial/ethnic and socioeconomic disparities in cancer trends based on data from 2014 to 2020. The analysis found that Black women in particular, were the least likely to have an early-stage diagnosis of breast cancer. Localized‐stage breast cancer was diagnosed in 57% of Black women versus 68% of White women.

Islami_Farhad_web.jpg
Dr. Farhad Islami

“Despite substantial progress in cancer prevention, early detection, and treatments, the burden of cancer remains greater among populations that have been historically marginalized, including people of color, people with lower socioeconomic status, and people living in nonmetropolitan areas,” said Dr. Islami, who is senior scientific director of cancer disparity research in the Surveillance & Health Equity Science Department at the American Cancer Society.

The reasons behind outcomes disparities in breast cancer are complex, making solutions challenging, say experts researching racial differences in cancer outcomes.

While social determinants of health (SDH) seem to be drivers of higher breast cancer mortality in Black women, biological differences between Black and White women are also linked to poorer outcomes in Black women with breast cancer, new studies suggest. Among the findings of this research is that breast cancer tests may be contributing to the disparities and misguiding care for some patients of color.
 

SDH and Screening Rates Differences By Race

A range of factors contribute to racial and ethnic disparities in breast cancer outcomes, said Pamela Ganschow, MD, an associate professor in the Department of Internal Medicine at the University of Illinois Cancer Center in Chicago and part of the university’s Cancer Prevention and Control research program. These include socioeconomic status, access to timely and high-quality care across the cancer control continuum, cultural beliefs, differences in genetic makeup and tumor biology, as well as system biases, such as implicit biases and systemic racism, Dr. Ganschow said.

Dr. Islami adds that gaps in access to cancer prevention, early detection, and treatment are largely rooted in fundamental inequities in social determinants of health (SDH), such as whether a patient has safe housing, transportation, education, job opportunities, income, access to nutritious foods, and language and literacy skills, among others.

Dr. Islami’s analysis, for example, shows that people of color are generally more likely to have lower educational attainment and to experience poverty, food insecurity, and housing insecurity compared with White people. Among people aged 18-64 years, the age-adjusted proportion of individuals with no health insurance in 2021 was also higher among Black (13.7%), American Indian/Alaskan Native (18.7%), and Hispanic (28.7%) patients than among White (7.8%) or Asian (5.9%) people, according to the report.

Competing needs can also get in the way of prioritizing cancer screenings, especially for patients in lower socio-economic populations, Dr. Ganschow said.

Ganschow_Pamela_CHICAGO_web.JPG
Dr. Pamela Ganschow


“You’ve got people who are working a job or three jobs, just to make ends meet for their family and can’t necessarily take time off to get that done,” she said. “Nor is it prioritized in their head because they’ve got to put a meal on the table.”

But the racial disparities between Black and White women, at least, are not clearly explained by differences between the screening rates..

Of patients who received mammograms 76% were White and 79% were Black, according to another recent study coauthored by Dr. Islami. While Black women appear to have the highest breast cancer screening rates, some data suggest such rates are being overreported.

Lower screening rates were seen in American Indian/Alaska Native (59%), Asian (67%), and Hispanic women (74%).
 

 

 

Biological Differences, Bad Testing Recommendations May Contribute to Poor Outcomes

Differences in biology may be one overlooked internal driver of lower breast cancer survival in Black women.

Researchers at Sanford Burnham Prebys in La Jolla, California, recently analyzed the breast cells of White and Black women, finding significant molecular differences that may be contributing to higher breast cancer mortality rates in Black women.

Investigators analyzed both healthy tissue and tumor tissue from 185 Black women and compared the samples to that of White women. They discovered differences among Black and White women in the way their DNA repair genes are expressed, both in healthy breast tissue and in tumors positive for estrogen receptor breast cancer. Molecular differences were also present in the cellular signals that control how fast cells, including cancer cells, grow.

DNA repair is part of normal cellular function and helps cells recover from damage that can occur during DNA replication or in response to external factors, such as stress.

“One of the first lines of defense, to prevent the cell from becoming a tumor are DNA damage repair pathways,” said Svasti Haricharan, PhD, a coauthor of the study and an assistant professor at Sanford Burnham Prebys. “We know there are many different DNA damage repair pathways that respond to different types of DNA damage. What we didn’t know was that, even in our normal cells, based on your race and ethnicity, you have different levels of DNA repair proteins.”

Haricharan_Svasti_CALIF_web.jpg
Dr. Svasti Haricharan


The study found that many of the proteins associated with endocrine resistance and poor outcomes in breast cancer patients are differently regulated in Black women compared with White woman. These differences contribute to resistance to standard endocrine therapy, Dr. Haricharan said.

“Because we never studied the biology in Black woman, it was just assumed that across all demographics, it must be the same,” she said. “We are not even accounting for the possibility there are likely intrinsic differences for how you will respond to an endocrine treatment.”

Testing and treatment may also be playing a role in worse breast cancer outcomes for Black women.

In an analysis of 73,363 women with early-stage, estrogen receptor–positive breast cancer, investigators found that a common test used to decide the treatment course for patients may be leading to bad recommendations for Black women.

The test, known as the 21-gene breast recurrence score, is the most commonly ordered biomarker test used to guide doctor’s recommendations for patients with estrogen receptor–positive breast cancer, the most common form of cancer in Black women, representing about 70%-80% of cases.

The test helps physicians identify which patients are good candidates for chemo, but the test may underestimate the benefit of chemo for Black women. It ranks some Black women as unlikely to benefit from chemo, when they actually would have benefited, according to the January 2024 study, published in the Journal of the National Comprehensive Cancer Network.

The test gives a score of zero to 100, explains Kent Hoskins, MD, oncology service line medical director at the University of Illinois (UI) Health and director of the Familial Breast Cancer Clinic at UI Health, both in Chicago. The higher the score, the higher the risk and the greater the benefit of chemotherapy. A patient is either above the cut-off score and receives chemo, or is below the cut-off score and does not. In the analysis, investigators found that Black women start improving with chemo at a lower score than White women do.

Hoskins_Kent_CHICAGO_web.jpg
Dr. Kent Hoskins


Dr. Hoskins said the results raise questions about whether the biomarker test should be modified to be more applicable to Black women, whether other tests should be used, or if physicians should judge cut-off scores differently, depending on race.
 

 

 

How Neighborhood Impacts Breast Cancer, Death Rates

Living in a disadvantaged neighborhood also lowers breast cancer survival, according to new research. A disadvantaged neighborhood is generally defined as a location associated with higher concentrations of poverty, higher rates of unemployment, and less access to health care, quality housing, food, and community resources, according to the Centers for Disease Control and Prevention.

Authors of a study published in JAMA Network Open on April 18 identified 350,824 patients with breast cancer. Of these, 41,519 (11.8%) were Hispanic, 39,631 (11.3%) were non-Hispanic Black, and 234,698 (66.9%) were non-Hispanic White. Investigators divided the patients into five groups representing the lowest to highest neighborhood socioeconomic indices using the Yost Index. (The Yost Index is used by the National Cancer Institute for cancer surveillance and is based on variables such as household income, home value, median rent, percentage below 150% of the poverty line, education, and unemployment.)

Of the Black and Hispanic patients in the study, the highest proportions of both demographics lived in the most disadvantaged neighborhoods. (16,141 Black patients [30.9%]) and 10,168 Hispanic patients [19.5%]). Although 45% of White patients also fell into that same category, the highest proportion of White patients in the study lived in the most advantaged neighborhoods (66,529 patients [76.2%]).

Findings showed patients in the most disadvantaged neighborhoods had the highest proportion of triple-negative breast cancer. Patients in this group also had the lowest proportion of patients who completed surgery and radiation, and the highest proportion of patients who received chemotherapy, compared with all other neighborhood groups. The most advantaged neighborhoods group had higher proportions of localized-stage cancer, a higher proportion of patients who underwent surgery and radiation, and the lowest proportion of patients receiving chemotherapy treatment.

Patients in the most disadvantaged neighborhoods also had the highest risk of mortality (hazard ratio [HR,] 1.53; 95% CI, 1.48-1.59; P less than .001) compared with patients living in the most advantaged neighborhoods. Non-Hispanic Black patients in particular, had the highest risk of mortality, compared with non-Hispanic White patients (HR, 1.16; 95% CI, 1.13-1.20; P less than .001).

Authors wrote that the findings suggest neighborhood disadvantage is independently associated with shorter survival in patients with breast cancer, even after controlling for individual-level factors, tumor characteristics, and treatment.

“To address these residual disparities associated with neighborhood disadvantage, research must focus on which components of the built environment influence outcomes,” the authors said.

Another recent study also found correlations among where breast cancer patients lived and how they fared with the disease.

Jasmine M. Miller-Kleinhenz, PhD, an assistant professor at University of Mississippi Medical Center in Jackson, studied how historical redlining impacts breast cancer development and outcomes in her research published in JAMA Network Open, earlier this year. Redlining refers to the practice of denying people access to credit because of where they live. Historically, mortgage lenders widely redlined neighborhoods with predominantly Black residents. The 1968 Fair Housing Act outlawed racially motivated redlining, but consequences from historical redlining still exist.

Miller_Kleinhenz_Jasmine_MS_web.jpg
Dr. Jasmine M. Miller-Kleinhenz


Dr. Miller-Kleinhenz and her colleagues analyzed a cohort of 1764 women diagnosed with breast cancer between January 2010 and December 2017, who were followed up through December 2019. Investigators accessed the cohort based on three exposures: historic redlining (HRL), contemporary mortgage discrimination (CMD), and persistent mortgage discrimination (PMD). Contemporary mortgage discrimination refers to current-day discriminatory mortgage practices and persistent mortgage discrimination refers to neighborhoods that have experienced both HRL and CMD.

Findings showed that Black women living in historical redlined areas had increased odds of being diagnosed with aggressive forms of breast cancer, while White women in redlined areas had increased odds of late-stage diagnosis.

White women exposed to persistent mortgage discrimination were twice as likely to die of breast cancer, compared with their White counterparts living in areas without historical redlining or contemporary mortgage discrimination, the study found.

That is not to say that Black women did not have an increased risk of breast cancer mortality, Dr. Miller-Kleinhenz explained. Black women had a more than threefold elevated risk of breast cancer mortality compared with White women no matter where they lived, according to the findings.

“These results were surprising because it is showing that while neighborhood conditions might be a major driver of breast cancer mortality in White women, there are factors beyond the neighborhood that are additional drivers that are contributing to poor outcomes in Black women,” she said.
 

 

 

Hope for Improved Outcomes, Higher Survival Rates

Investigators hope the findings of all of this new research lead to better, more targeted treatments and, in turn, improved outcomes.

Dr. Haricharan is optimistic about the improvement of breast cancer outcomes as more is learned about the biology of Black patients and other non-White patients.

There is a growing effort to include more data from minoritized populations in breast cancer research studies, Dr. Haricharan said, and she foresees associated changes to clinical protocols in the future. Her own team is working on creating larger data sets that are more representative of non-White patients to further analyze the differences found in their prior study.

“I think there’s this understanding that, until we have data sets that are more representative, we really are catering to [only one] population in terms of our diagnostic and therapeutic technological advances,” she said.

The American Cancer Society meanwhile, is launching a new initiative in May that aims to collect more health data from Black women to ultimately develop more effective cancer interventions. VOICES of Black Women will focus on collecting and studying health data from Black women through online surveys. The society’s goal is to enroll at least 100,000 Black women in the United States between ages 25 and 55.

Dr. Miller-Kleinhenz called the initiative “an important step to starting to research and answer some of these lingering questions about why there continue to be breast cancer disparities.”

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>167769</fileName> <TBEID>0C04FAFB.SIG</TBEID> <TBUniqueIdentifier>MD_0C04FAFB</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>Published-All Pubs</TBLocation> <QCDate>20240418T141224</QCDate> <firstPublished>20240418T141403</firstPublished> <LastPublished>20240419T142615</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240418T141402</CMSDate> <articleSource/> <facebookInfo/> <meetingNumber/> <byline/> <bylineText>ALICIA GALLEGOS</bylineText> <bylineFull>ALICIA GALLEGOS</bylineFull> <bylineTitleText>MDedge News</bylineTitleText> <USOrGlobal/> <wireDocType/> <newsDocType>Feature</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>While social determinants of health (SDH) seem to be drivers of higher breast cancer mortality in Black women, other biological differences between Black and Wh</metaDescription> <articlePDF/> <teaserImage>301146</teaserImage> <teaser>New research suggests that racial disparities in breast cancer are driven by more than socioeconomic factors.</teaser> <title>What’s Driving the Higher Breast Cancer Death Rate in Black Women?</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>2</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>oncr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>ob</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>im</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>fp</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> </publications_g> <publications> <term canonical="true">31</term> <term>23</term> <term>21</term> <term>15</term> </publications> <sections> <term canonical="true">27980</term> <term>39313</term> </sections> <topics> <term canonical="true">192</term> <term>38029</term> <term>66772</term> <term>280</term> <term>39570</term> <term>278</term> <term>270</term> <term>263</term> <term>322</term> </topics> <links> <link> <itemClass qcode="ninat:picture"/> <altRep contenttype="image/jpeg">images/24012859.jpg</altRep> <description role="drol:caption">Dr. Farhad Islami</description> <description role="drol:credit">American Cancer Society</description> </link> <link> <itemClass qcode="ninat:picture"/> <altRep contenttype="image/jpeg">images/2401285a.jpg</altRep> <description role="drol:caption">Dr. Pamela Ganschow</description> <description role="drol:credit">University of Illinois Cancer Center</description> </link> <link> <itemClass qcode="ninat:picture"/> <altRep contenttype="image/jpeg">images/2401285d.jpg</altRep> <description role="drol:caption">Dr. Svasti Haricharan</description> <description role="drol:credit">Sanford Burnham Prebys</description> </link> <link> <itemClass qcode="ninat:picture"/> <altRep contenttype="image/jpeg">images/2401285b.jpg</altRep> <description role="drol:caption">Dr. Kent Hoskins</description> <description role="drol:credit">University of Illinois Cancer Center</description> </link> <link> <itemClass qcode="ninat:picture"/> <altRep contenttype="image/jpeg">images/2401285c.jpg</altRep> <description role="drol:caption">Dr. Jasmine M. Miller-Kleinhenz</description> <description role="drol:credit">University of Mississippi Medical Center</description> </link> </links> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>What’s Driving the Higher Breast Cancer Death Rate in Black Women?</title> <deck/> </itemMeta> <itemContent> <p>More women today are surviving breast cancer if it’s caught early, largely because of better screening and more effective and targeted treatments. </p> <p>However, not everyone has benefited equitably from this progress. Critical gaps in breast cancer outcomes and survival remain for women in racial and ethnic minority groups. <br/><br/>Black women for instance, <span class="Hyperlink"><a href="https://www.bcrf.org/understanding-breast-cancer-racial-disparities/#:~:text=Black%20women%20have%20a%2041,that%20of%20young%20white%20women">have a 41% higher death rate</a></span> from breast cancer compared with White patients. They also have a greater incidence of aggressive disease like triple-negative breast cancer. Native American and Hispanic women, meanwhile, are more likely to be diagnosed with breast cancer at an earlier age than White women and experience more aggressive breast cancers.</p> <p>In 2023, Farhad Islami, MD, PhD, and his team <span class="Hyperlink"><a href="https://acsjournals.onlinelibrary.wiley.com/doi/10.3322/caac.21812">published an updated analysis</a></span> of racial/ethnic and socioeconomic disparities in cancer trends based on data from 2014 to 2020. The analysis found that Black women in particular, were the least likely to have an early-stage diagnosis of breast cancer. Localized‐stage breast cancer was diagnosed in 57% of Black women versus 68% of White women.[[{"fid":"301146","view_mode":"medstat_image_flush_left","fields":{"format":"medstat_image_flush_left","field_file_image_alt_text[und][0][value]":"Farhad Islami, MD, PhD, senior scientific director of cancer disparity research in the Surveillance &amp; Health Equity Science Department at the American Cancer Society","field_file_image_credit[und][0][value]":"American Cancer Society","field_file_image_caption[und][0][value]":"Dr. Farhad Islami"},"type":"media","attributes":{"class":"media-element file-medstat_image_flush_left"}}]]</p> <p>“Despite substantial progress in cancer prevention, early detection, and treatments, the burden of cancer remains greater among populations that have been historically marginalized, including people of color, people with lower socioeconomic status, and people living in nonmetropolitan areas,” said Dr. Islami, who is senior scientific director of cancer disparity research in the Surveillance &amp; Health Equity Science Department at the American Cancer Society.<br/><br/>The reasons behind outcomes disparities in breast cancer are complex, making solutions challenging, say experts researching racial differences in cancer outcomes.<br/><br/><span class="tag metaDescription">While social determinants of health (SDH) seem to be drivers of higher breast cancer mortality in Black women, other biological differences between Black and White women are also linked to poorer outcomes in Black women with breast cancer, new studies suggest.</span> Among the findings of this research is that breast cancer tests may be contributing to the disparities and misguiding care for some patients of color. <br/><br/></p> <h2>SDH and Screening Rates Differences By Race </h2> <p>A range of factors contribute to racial and ethnic disparities in breast cancer outcomes, said Pamela Ganschow, MD, an associate professor in the Department of Internal Medicine at the University of Illinois Cancer Center in Chicago and part of the university’s Cancer Prevention and Control research program. These include socioeconomic status, access to timely and high-quality care across the cancer control continuum, cultural beliefs, differences in genetic makeup and tumor biology, as well as system biases, such as implicit biases and systemic racism, Dr. Ganschow said. </p> <p>Dr. Islami adds that <span class="Hyperlink"><a href="https://health.gov/healthypeople/priority-areas/social-determinants-health">gaps in access</a></span> to cancer prevention, early detection, and treatment are largely rooted in fundamental inequities in social determinants of health (SDH), such as whether a patient has safe housing, transportation, education, job opportunities, income, access to nutritious foods, and language and literacy skills, among others. <br/><br/>Dr. Islami’s analysis, for example, shows that people of color are generally more likely to have lower educational attainment and to experience poverty, food insecurity, and housing insecurity compared with White people. Among people aged 18-64 years, the age-adjusted proportion of individuals with no health insurance in 2021 was also higher among Black (13.7%), American Indian/Alaskan Native (18.7%), and Hispanic (28.7%) patients than among White (7.8%) or Asian (5.9%) people, according to the report. <br/><br/>Competing needs can also get in the way of prioritizing cancer screenings, especially for patients in lower socio-economic populations, Dr. Ganschow said. [[{"fid":"301147","view_mode":"medstat_image_flush_left","fields":{"format":"medstat_image_flush_left","field_file_image_alt_text[und][0][value]":"Pamela Ganschow, MD, associate professor in the Department of Internal Medicine at the University of Illinois Cancer Center in Chicago","field_file_image_credit[und][0][value]":"University of Illinois Cancer Center","field_file_image_caption[und][0][value]":"Dr. Pamela Ganschow"},"type":"media","attributes":{"class":"media-element file-medstat_image_flush_left"}}]]<br/><br/>“You’ve got people who are working a job or three jobs, just to make ends meet for their family and can’t necessarily take time off to get that done,” she said. “Nor is it prioritized in their head because they’ve got to put a meal on the table.” <br/><br/>But the racial disparities between Black and White women, at least, are not clearly explained by differences between the screening rates.. <br/><br/>Of patients who received mammograms 76% were White and 79% were Black, according to <span class="Hyperlink"><a href="https://pubmed.ncbi.nlm.nih.gov/37129858/">another recent study</a></span> coauthored by Dr. Islami. While Black women appear to have the highest breast cancer screening rates, <span class="Hyperlink"><a href="https://pubmed.ncbi.nlm.nih.gov/19505902/">some data suggest</a></span> such rates are being overreported. <br/><br/>Lower screening rates were seen in American Indian/Alaska Native (59%), Asian (67%), and Hispanic women (74%).<br/><br/></p> <h2>Biological Differences, Bad Testing Recommendations May Contribute to Poor Outcomes</h2> <p>Differences in biology may be one overlooked internal driver of lower breast cancer survival in Black women. </p> <p>Researchers at Sanford Burnham Prebys in La Jolla, California, recently <span class="Hyperlink"><a href="https://journals.sagepub.com/doi/full/10.1177/17588359221075458">analyzed the breast cells</a></span> of White and Black women, finding significant molecular differences that may be contributing to higher breast cancer mortality rates in Black women. <br/><br/>Investigators analyzed both healthy tissue and tumor tissue from 185 Black women and compared the samples to that of White women. They discovered differences among Black and White women in the way their DNA repair genes are expressed, both in healthy breast tissue and in tumors positive for estrogen receptor breast cancer. Molecular differences were also present in the cellular signals that control how fast cells, including cancer cells, grow. <br/><br/>DNA repair is part of normal cellular function and helps cells recover from damage that can occur during DNA replication or in response to external factors, such as stress. <br/><br/>“One of the first lines of defense, to prevent the cell from becoming a tumor are DNA damage repair pathways,” said Svasti Haricharan, PhD, a coauthor of the study and an assistant professor at Sanford Burnham Prebys. “We know there are many different DNA damage repair pathways that respond to different types of DNA damage. What we didn’t know was that, even in our normal cells, based on your race and ethnicity, you have different levels of DNA repair proteins.”[[{"fid":"301150","view_mode":"medstat_image_flush_left","fields":{"format":"medstat_image_flush_left","field_file_image_alt_text[und][0][value]":"Svasti Haricharan, PhD, assistant professor at Sanford Burnham Prebys","field_file_image_credit[und][0][value]":"Sanford Burnham Prebys","field_file_image_caption[und][0][value]":"Dr. Svasti Haricharan"},"type":"media","attributes":{"class":"media-element file-medstat_image_flush_left"}}]]<br/><br/>The study found that many of the proteins associated with endocrine resistance and poor outcomes in breast cancer patients are differently regulated in Black women compared with White woman. These differences contribute to resistance to standard endocrine therapy, Dr. Haricharan said. <br/><br/>“Because we never studied the biology in Black woman, it was just assumed that across all demographics, it must be the same,” she said. “We are not even accounting for the possibility there are likely intrinsic differences for how you will respond to an endocrine treatment.”<br/><br/>Testing and treatment may also be playing a role in worse breast cancer outcomes for Black women. <br/><br/>In an analysis of 73,363 women with early-stage, estrogen receptor–positive breast cancer, investigators found that a common test used to decide the treatment course for patients may be leading to bad recommendations for Black women. <br/><br/> The test, known as the 21-gene breast recurrence score, is the most commonly ordered biomarker test used to guide doctor’s recommendations for patients with estrogen receptor–positive breast cancer, the most common form of cancer in Black women, representing about 70%-80% of cases. <br/><br/>The test helps physicians identify which patients are good candidates for chemo, but the test may underestimate the benefit of chemo for Black women. It ranks some Black women as unlikely to benefit from chemo, when they actually would have benefited, according to the <span class="Hyperlink"><a href="https://jnccn.org/view/journals/jnccn/22/1D/article-e237077.xml">January 2024 study</a></span>, published in the Journal of the <em>National Comprehensive Cancer Network</em>. <br/><br/>The test gives a score of zero to 100, explains Kent Hoskins, MD, oncology service line medical director at the University of Illinois (UI) Health and director of the Familial Breast Cancer Clinic at UI Health, both in Chicago. The higher the score, the higher the risk and the greater the benefit of chemotherapy. A patient is either above the cut-off score and receives chemo, or is below the cut-off score and does not. In the analysis, investigators found that Black women start improving with chemo at a lower score than White women do.[[{"fid":"301148","view_mode":"medstat_image_flush_right","fields":{"format":"medstat_image_flush_right","field_file_image_alt_text[und][0][value]":"Kent Hoskins, MD, oncology service line medical director at the University of Illinois (UI) Health and director of the Familial Breast Cancer Clinic at UI Health, both in Chicago","field_file_image_credit[und][0][value]":"University of Illinois Cancer Center","field_file_image_caption[und][0][value]":"Dr. Kent Hoskins"},"type":"media","attributes":{"class":"media-element file-medstat_image_flush_right"}}]] <br/><br/>Dr. Hoskins said the results raise questions about whether the biomarker test should be modified to be more applicable to Black women, whether other tests should be used, or if physicians should judge cut-off scores differently, depending on race.<br/><br/></p> <h2>How Neighborhood Impacts Breast Cancer, Death Rates </h2> <p>Living in a disadvantaged neighborhood also lowers breast cancer survival, according to new research. A disadvantaged neighborhood is generally defined as a location associated with higher concentrations of poverty, higher rates of unemployment, and less access to health care, quality housing, food, and community resources, <span class="Hyperlink"><a href="https://www.cdc.gov/dhdsp/health_equity/neighborhood.htm">according to the Centers for Disease Control and Prevention</a></span>.</p> <p>Authors of <span class="Hyperlink"><a href="https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2817810">a study</a> published in </span><em>JAMA Network Open</em> on April 18 identified 350,824 patients with breast cancer. Of these, 41,519 (11.8%) were Hispanic, 39,631 (11.3%) were non-Hispanic Black, and 234,698 (66.9%) were non-Hispanic White. Investigators divided the patients into five groups representing the lowest to highest neighborhood socioeconomic indices using the Yost Index. (The Yost Index is used by the National Cancer Institute for cancer surveillance and is based on variables such as household income, home value, median rent, percentage below 150% of the poverty line, education, and unemployment.) <br/><br/>Of the Black and Hispanic patients in the study, the highest proportions of both demographics lived in the most disadvantaged neighborhoods. (16,141 Black patients [30.9%]) and 10,168 Hispanic patients [19.5%]). Although 45% of White patients also fell into that same category, the highest proportion of White patients in the study lived in the most advantaged neighborhoods (66,529 patients [76.2%]). <br/><br/>Findings showed patients in the most disadvantaged neighborhoods had the highest proportion of triple-negative breast cancer. Patients in this group also had the lowest proportion of patients who completed surgery and radiation, and the highest proportion of patients who received chemotherapy, compared with all other neighborhood groups. The most advantaged neighborhoods group had higher proportions of localized-stage cancer, a higher proportion of patients who underwent surgery and radiation, and the lowest proportion of patients receiving chemotherapy treatment.<br/><br/>Patients in the most disadvantaged neighborhoods also had the highest risk of mortality (hazard ratio [HR,] 1.53; 95% CI, 1.48-1.59; <em>P</em> less than .001) compared with patients living in the most advantaged neighborhoods. Non-Hispanic Black patients in particular, had the highest risk of mortality, compared with non-Hispanic White patients (HR, 1.16; 95% CI, 1.13-1.20; <em>P</em> less than .001).<br/><br/>Authors wrote that the findings suggest neighborhood disadvantage is independently associated with shorter survival in patients with breast cancer, even after controlling for individual-level factors, tumor characteristics, and treatment. <br/><br/>“To address these residual disparities associated with neighborhood disadvantage, research must focus on which components of the built environment influence outcomes,” the authors said. <br/><br/>Another recent study also found correlations among where breast cancer patients lived and how they fared with the disease. <br/><br/>Jasmine M. Miller-Kleinhenz, PhD, an assistant professor at University of Mississippi Medical Center in Jackson, studied how historical redlining impacts breast cancer development and outcomes <span class="Hyperlink"><a href="https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2815281">in her research</a></span> published in <em>JAMA Network Open</em>, earlier this year. Redlining refers to the practice of denying people access to credit because of where they live. Historically, mortgage lenders widely redlined neighborhoods with predominantly Black residents. The 1968 Fair Housing Act outlawed racially motivated redlining, but <span class="Hyperlink"><a href="https://link.springer.com/article/10.1007/s11606-023-08051-4">consequences from historical redlining</a></span> still exist. [[{"fid":"301149","view_mode":"medstat_image_flush_left","fields":{"format":"medstat_image_flush_left","field_file_image_alt_text[und][0][value]":"Jasmine M. Miller-Kleinhenz, PhD, assistant professor at University of Mississippi Medical Center in Jackson","field_file_image_credit[und][0][value]":"University of Mississippi Medical Center","field_file_image_caption[und][0][value]":"Dr. Jasmine M. Miller-Kleinhenz"},"type":"media","attributes":{"class":"media-element file-medstat_image_flush_left"}}]]<br/><br/>Dr. Miller-Kleinhenz and her colleagues analyzed a cohort of 1764 women diagnosed with breast cancer between January 2010 and December 2017, who were followed up through December 2019. Investigators accessed the cohort based on three exposures: historic redlining (HRL), contemporary mortgage discrimination (CMD), and persistent mortgage discrimination (PMD). Contemporary mortgage discrimination refers to current-day discriminatory mortgage practices and persistent mortgage discrimination refers to neighborhoods that have experienced both HRL and CMD. <br/><br/>Findings showed that Black women living in historical redlined areas had increased odds of being diagnosed with aggressive forms of breast cancer, while White women in redlined areas had increased odds of late-stage diagnosis.<br/><br/>White women exposed to persistent mortgage discrimination were twice as likely to die of breast cancer, compared with their White counterparts living in areas without historical redlining or contemporary mortgage discrimination, the study found. <br/><br/>That is not to say that Black women did not have an increased risk of breast cancer mortality, Dr. Miller-Kleinhenz explained. Black women had a more than threefold elevated risk of breast cancer mortality compared with White women no matter where they lived, according to the findings.<br/><br/>“These results were surprising because it is showing that while neighborhood conditions might be a major driver of breast cancer mortality in White women, there are factors beyond the neighborhood that are additional drivers that are contributing to poor outcomes in Black women,” she said. <br/><br/></p> <h2>Hope for Improved Outcomes, Higher Survival Rates</h2> <p>Investigators hope the findings of all of this new research lead to better, more targeted treatments and, in turn, improved outcomes. </p> <p>Dr. Haricharan is optimistic about the improvement of breast cancer outcomes as more is learned about the biology of Black patients and other non-White patients. <br/><br/>There is a growing effort to include more data from minoritized populations in breast cancer research studies, Dr. Haricharan said, and she foresees associated changes to clinical protocols in the future. Her own team is working on creating larger data sets that are more representative of non-White patients to further analyze the differences found in their prior study. <br/><br/>“I think there’s this understanding that, until we have data sets that are more representative, we really are catering to [only one] population in terms of our diagnostic and therapeutic technological advances,” she said. <br/><br/>The American Cancer Society meanwhile, is launching a new initiative in May that aims to collect more health data from Black women to ultimately develop more effective cancer interventions. <span class="Hyperlink"><a href="https://voices.cancer.org/">VOICES of Black Women</a></span> will focus on collecting and studying health data from Black women through online surveys. The society’s goal is to enroll at least 100,000 Black women in the United States between ages 25 and 55. <br/><br/>Dr. Miller-Kleinhenz called the initiative “an important step to starting to research and answer some of these lingering questions about why there continue to be breast cancer disparities.”<span class="end"/></p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Certain Women May Face Higher Risk for Second Breast Cancer

Article Type
Changed
Wed, 04/24/2024 - 12:06

 

TOPLINE:

A recent study suggests that younger breast cancer survivors with a germline pathogenic variant or those with an initial diagnosis of in situ vs invasive primary breast cancer have a significantly higher risk for a second primary breast cancer.

METHODOLOGY:

  • Women who are diagnosed with breast cancer at age 40 or younger are about two to three times more likely to develop second primary breast cancer compared with women who are older when first diagnosed.
  • However, data are lacking on whether certain factors increase a woman’s risk for a second primary breast cancer.
  • To classify the risk of developing a second primary breast cancer, the researchers evaluated a main cohort of 685 patients with stages 0-III breast cancer who were diagnosed at age 40 years or younger and had undergone unilateral mastectomy or lumpectomy as primary surgery between August 2006 and June 2015. The team also analyzed data on 547 younger women who had a bilateral mastectomy.
  • The researchers assessed various breast cancer risk factors, including self-reported ethnicity, race, age, family history of breast or ovarian cancer, germline genetics, tumor stage, grade, and receptor status.
  • The primary outcome was the diagnosis of a second primary breast cancer that occurred at least 6 months after the initial diagnosis of primary breast cancer.

TAKEAWAY:

  • Among the 685 main study participants, 17 (2.5%) developed a second primary breast cancer (15 contralateral and 2 ipsilateral) over a median of 4.2 years since their primary diagnosis. The 5- and 10-year cumulative incidence of a second primary breast cancer was 1.5% and 2.6%, respectively.
  • Overall, only 33 women were positive for a germline pathogenic variant, and having a pathogenic variant was associated with a fourfold higher risk for second primary breast cancer compared with noncarriers at 5 years (5.5% vs 1.3%) and at 10 years (8.9% vs 2.2%). These findings were held in multivariate models.
  • Patients initially diagnosed with in situ disease had more than a fivefold higher risk for second primary breast cancer compared with those initially diagnosed with invasive disease — 6.2% vs 1.2% at 5 years and 10.4% vs 2.1% at 10 years (hazard ratio, 5.25; P = .004). These findings were held in multivariate models (adjusted sub-hazard ratio [sHR], 5.61; 95% CI, 1.52-20.70) and among women without a pathogenic variant (adjusted sHR, 5.67; 95% CI, 1.54-20.90).
  • The researchers also found a low risk for contralateral breast cancer among women without pathogenic variants, which could inform surgical decision-making.

IN PRACTICE:

Although the number of women positive for a germline pathogenic variant was small (n = 33) and “results should be interpreted cautiously,” the analysis signals “the importance of genetic testing” in younger breast cancer survivors to gauge their risk for a second primary breast cancer, the authors concluded. The authors added that their “finding of a higher risk of [second primary breast cancer] among those diagnosed with in situ primary [breast cancer] merits further investigation.”

 

 

SOURCE:

This study, led by Kristen D. Brantley, PhD, from Harvard T. H. Chan School of Public Health, Boston, was published online in JAMA Oncology.

LIMITATIONS:

A small number of second breast cancer events limited the authors’ ability to assess the effects of multiple risk factors together. Data on risk factors might be incomplete. About 9% of participants completed abbreviated questionnaires that did not include information on body mass index, alcohol, smoking, and family history. Frequencies of pathogenic variants besides BRCA1 and BRCA2 may be underestimated.

DISCLOSURES:

This study received no external funding. Four authors reported receiving grants or royalties outside this work. Other reported no competing interests.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

A recent study suggests that younger breast cancer survivors with a germline pathogenic variant or those with an initial diagnosis of in situ vs invasive primary breast cancer have a significantly higher risk for a second primary breast cancer.

METHODOLOGY:

  • Women who are diagnosed with breast cancer at age 40 or younger are about two to three times more likely to develop second primary breast cancer compared with women who are older when first diagnosed.
  • However, data are lacking on whether certain factors increase a woman’s risk for a second primary breast cancer.
  • To classify the risk of developing a second primary breast cancer, the researchers evaluated a main cohort of 685 patients with stages 0-III breast cancer who were diagnosed at age 40 years or younger and had undergone unilateral mastectomy or lumpectomy as primary surgery between August 2006 and June 2015. The team also analyzed data on 547 younger women who had a bilateral mastectomy.
  • The researchers assessed various breast cancer risk factors, including self-reported ethnicity, race, age, family history of breast or ovarian cancer, germline genetics, tumor stage, grade, and receptor status.
  • The primary outcome was the diagnosis of a second primary breast cancer that occurred at least 6 months after the initial diagnosis of primary breast cancer.

TAKEAWAY:

  • Among the 685 main study participants, 17 (2.5%) developed a second primary breast cancer (15 contralateral and 2 ipsilateral) over a median of 4.2 years since their primary diagnosis. The 5- and 10-year cumulative incidence of a second primary breast cancer was 1.5% and 2.6%, respectively.
  • Overall, only 33 women were positive for a germline pathogenic variant, and having a pathogenic variant was associated with a fourfold higher risk for second primary breast cancer compared with noncarriers at 5 years (5.5% vs 1.3%) and at 10 years (8.9% vs 2.2%). These findings were held in multivariate models.
  • Patients initially diagnosed with in situ disease had more than a fivefold higher risk for second primary breast cancer compared with those initially diagnosed with invasive disease — 6.2% vs 1.2% at 5 years and 10.4% vs 2.1% at 10 years (hazard ratio, 5.25; P = .004). These findings were held in multivariate models (adjusted sub-hazard ratio [sHR], 5.61; 95% CI, 1.52-20.70) and among women without a pathogenic variant (adjusted sHR, 5.67; 95% CI, 1.54-20.90).
  • The researchers also found a low risk for contralateral breast cancer among women without pathogenic variants, which could inform surgical decision-making.

IN PRACTICE:

Although the number of women positive for a germline pathogenic variant was small (n = 33) and “results should be interpreted cautiously,” the analysis signals “the importance of genetic testing” in younger breast cancer survivors to gauge their risk for a second primary breast cancer, the authors concluded. The authors added that their “finding of a higher risk of [second primary breast cancer] among those diagnosed with in situ primary [breast cancer] merits further investigation.”

 

 

SOURCE:

This study, led by Kristen D. Brantley, PhD, from Harvard T. H. Chan School of Public Health, Boston, was published online in JAMA Oncology.

LIMITATIONS:

A small number of second breast cancer events limited the authors’ ability to assess the effects of multiple risk factors together. Data on risk factors might be incomplete. About 9% of participants completed abbreviated questionnaires that did not include information on body mass index, alcohol, smoking, and family history. Frequencies of pathogenic variants besides BRCA1 and BRCA2 may be underestimated.

DISCLOSURES:

This study received no external funding. Four authors reported receiving grants or royalties outside this work. Other reported no competing interests.

A version of this article appeared on Medscape.com.

 

TOPLINE:

A recent study suggests that younger breast cancer survivors with a germline pathogenic variant or those with an initial diagnosis of in situ vs invasive primary breast cancer have a significantly higher risk for a second primary breast cancer.

METHODOLOGY:

  • Women who are diagnosed with breast cancer at age 40 or younger are about two to three times more likely to develop second primary breast cancer compared with women who are older when first diagnosed.
  • However, data are lacking on whether certain factors increase a woman’s risk for a second primary breast cancer.
  • To classify the risk of developing a second primary breast cancer, the researchers evaluated a main cohort of 685 patients with stages 0-III breast cancer who were diagnosed at age 40 years or younger and had undergone unilateral mastectomy or lumpectomy as primary surgery between August 2006 and June 2015. The team also analyzed data on 547 younger women who had a bilateral mastectomy.
  • The researchers assessed various breast cancer risk factors, including self-reported ethnicity, race, age, family history of breast or ovarian cancer, germline genetics, tumor stage, grade, and receptor status.
  • The primary outcome was the diagnosis of a second primary breast cancer that occurred at least 6 months after the initial diagnosis of primary breast cancer.

TAKEAWAY:

  • Among the 685 main study participants, 17 (2.5%) developed a second primary breast cancer (15 contralateral and 2 ipsilateral) over a median of 4.2 years since their primary diagnosis. The 5- and 10-year cumulative incidence of a second primary breast cancer was 1.5% and 2.6%, respectively.
  • Overall, only 33 women were positive for a germline pathogenic variant, and having a pathogenic variant was associated with a fourfold higher risk for second primary breast cancer compared with noncarriers at 5 years (5.5% vs 1.3%) and at 10 years (8.9% vs 2.2%). These findings were held in multivariate models.
  • Patients initially diagnosed with in situ disease had more than a fivefold higher risk for second primary breast cancer compared with those initially diagnosed with invasive disease — 6.2% vs 1.2% at 5 years and 10.4% vs 2.1% at 10 years (hazard ratio, 5.25; P = .004). These findings were held in multivariate models (adjusted sub-hazard ratio [sHR], 5.61; 95% CI, 1.52-20.70) and among women without a pathogenic variant (adjusted sHR, 5.67; 95% CI, 1.54-20.90).
  • The researchers also found a low risk for contralateral breast cancer among women without pathogenic variants, which could inform surgical decision-making.

IN PRACTICE:

Although the number of women positive for a germline pathogenic variant was small (n = 33) and “results should be interpreted cautiously,” the analysis signals “the importance of genetic testing” in younger breast cancer survivors to gauge their risk for a second primary breast cancer, the authors concluded. The authors added that their “finding of a higher risk of [second primary breast cancer] among those diagnosed with in situ primary [breast cancer] merits further investigation.”

 

 

SOURCE:

This study, led by Kristen D. Brantley, PhD, from Harvard T. H. Chan School of Public Health, Boston, was published online in JAMA Oncology.

LIMITATIONS:

A small number of second breast cancer events limited the authors’ ability to assess the effects of multiple risk factors together. Data on risk factors might be incomplete. About 9% of participants completed abbreviated questionnaires that did not include information on body mass index, alcohol, smoking, and family history. Frequencies of pathogenic variants besides BRCA1 and BRCA2 may be underestimated.

DISCLOSURES:

This study received no external funding. Four authors reported receiving grants or royalties outside this work. Other reported no competing interests.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>167759</fileName> <TBEID>0C04FA90.SIG</TBEID> <TBUniqueIdentifier>MD_0C04FA90</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240417T164140</QCDate> <firstPublished>20240417T164348</firstPublished> <LastPublished>20240417T164349</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240417T164348</CMSDate> <articleSource/> <facebookInfo/> <meetingNumber/> <byline>Deepa Varma</byline> <bylineText>DEEPA VARMA</bylineText> <bylineFull>DEEPA VARMA</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>A recent study suggests that younger breast cancer survivors with a germline pathogenic variant or those with an initial diagnosis of in situ vs invasive primar</metaDescription> <articlePDF/> <teaserImage/> <teaser>Two and a half percent of breast cancer survivors developed a second primary breast cancer, a new study shows. </teaser> <title>Certain Women May Face Higher Risk for Second Breast Cancer</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>oncr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>fp</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>im</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>ob</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> </publications_g> <publications> <term canonical="true">31</term> <term>15</term> <term>21</term> <term>23</term> </publications> <sections> <term canonical="true">27970</term> <term>39313</term> </sections> <topics> <term canonical="true">192</term> <term>39570</term> <term>270</term> <term>263</term> <term>322</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Certain Women May Face Higher Risk for Second Breast Cancer</title> <deck/> </itemMeta> <itemContent> <h2>TOPLINE:</h2> <p> <span class="tag metaDescription">A recent study suggests that younger breast cancer survivors with a germline pathogenic variant or those with an initial diagnosis of in situ vs invasive primary breast cancer have a significantly higher risk for a second primary breast cancer.</span> </p> <h2>METHODOLOGY:</h2> <ul class="body"> <li>Women who are diagnosed with breast cancer at age 40 or younger are about two to three times more likely to develop second primary breast cancer compared with women who are older when first diagnosed.</li> <li>However, data are lacking on whether certain factors increase a woman’s risk for a second primary breast cancer.</li> <li>To classify the risk of developing a second primary breast cancer, the researchers evaluated a main cohort of 685 patients with stages 0-III breast cancer who were diagnosed at age 40 years or younger and had undergone unilateral mastectomy or lumpectomy as primary surgery between August 2006 and June 2015. The team also analyzed data on 547 younger women who had a bilateral mastectomy.</li> <li>The researchers assessed various breast cancer risk factors, including self-reported ethnicity, race, age, family history of breast or ovarian cancer, germline genetics, tumor stage, grade, and receptor status.</li> <li>The primary outcome was the diagnosis of a second primary breast cancer that occurred at least 6 months after the initial diagnosis of primary breast cancer.</li> </ul> <h2>TAKEAWAY:</h2> <ul class="body"> <li>Among the 685 main study participants, 17 (2.5%) developed a second primary breast cancer (15 contralateral and 2 ipsilateral) over a median of 4.2 years since their primary diagnosis. The 5- and 10-year cumulative incidence of a second primary breast cancer was 1.5% and 2.6%, respectively.</li> <li>Overall, only 33 women were positive for a germline pathogenic variant, and having a pathogenic variant was associated with a fourfold higher risk for second primary breast cancer compared with noncarriers at 5 years (5.5% vs 1.3%) and at 10 years (8.9% vs 2.2%). These findings were held in multivariate models.</li> <li>Patients initially diagnosed with in situ disease had more than a fivefold higher risk for second primary breast cancer compared with those initially diagnosed with invasive disease — 6.2% vs 1.2% at 5 years and 10.4% vs 2.1% at 10 years (hazard ratio, 5.25; P = .004). These findings were held in multivariate models (adjusted sub-hazard ratio [sHR], 5.61; 95% CI, 1.52-20.70) and among women without a pathogenic variant (adjusted sHR, 5.67; 95% CI, 1.54-20.90).</li> <li>The researchers also found a low risk for contralateral breast cancer among women without pathogenic variants, which could inform surgical decision-making.</li> </ul> <h2>IN PRACTICE:</h2> <p>Although the number of women positive for a germline pathogenic variant was small (n = 33) and “results should be interpreted cautiously,” the analysis signals “the importance of genetic testing” in younger breast cancer survivors to gauge their risk for a second primary breast cancer, the authors concluded. The authors added that their “finding of a higher risk of [second primary breast cancer] among those diagnosed with in situ primary [breast cancer] merits further investigation.”</p> <h2>SOURCE:</h2> <p>This study, led by Kristen D. Brantley, PhD, from Harvard T. H. Chan School of Public Health, Boston, was published <a href="https://jamanetwork.com/journals/jamaoncology/fullarticle/2817452">online</a> in <em>JAMA Oncology</em>.</p> <h2>LIMITATIONS:</h2> <p>A small number of second breast cancer events limited the authors’ ability to assess the effects of multiple risk factors together. Data on risk factors might be incomplete. About 9% of participants completed abbreviated questionnaires that did not include information on body mass index, alcohol, smoking, and family history. Frequencies of pathogenic variants besides BRCA1 and BRCA2 may be underestimated.</p> <h2>DISCLOSURES:</h2> <p>This study received no external funding. Four authors reported receiving grants or royalties outside this work. Other reported no competing interests.</p> <p> <em>A version of this article appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/certain-women-may-face-higher-risk-second-breast-cancer-2024a10007eo">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Most Targeted Cancer Drugs Lack Substantial Clinical Benefit

Article Type
Changed
Tue, 04/23/2024 - 17:03

 

TOPLINE:

An analysis of molecular-targeted cancer drug therapies recently approved in the United States found that fewer than one-third demonstrated substantial clinical benefits at the time of approval.

METHODOLOGY:

  • The strength and quality of evidence supporting genome-targeted cancer drug approvals vary. A big reason is the growing number of cancer drug approvals based on surrogate endpoints, such as disease-free and progression-free survival, instead of clinical endpoints, such as overall survival or quality of life. The US Food and Drug Administration (FDA) has also approved genome-targeted cancer drugs based on phase 1 or single-arm trials.
  • Given these less rigorous considerations for approval, “the validity and value of the targets and surrogate measures underlying FDA genome-targeted cancer drug approvals are uncertain,” the researchers explained.
  • In the current analysis, researchers assessed the validity of the molecular targets as well as the clinical benefits of genome-targeted cancer drugs approved in the United States from 2015 to 2022 based on results from pivotal trials.
  • The researchers evaluated the strength of evidence supporting molecular targetability using the European Society for Medical Oncology (ESMO) Scale for Clinical Actionability of Molecular Targets (ESCAT) and the clinical benefit using the ESMO–Magnitude of Clinical Benefit Scale (ESMO-MCBS).
  • The authors defined a substantial clinical benefit as an A or B grade for curative intent and a 4 or 5 for noncurative intent. High-benefit genomic-based cancer treatments were defined as those associated with a substantial clinical benefit (ESMO-MCBS) and that qualified as ESCAT category level I-A (a clinical benefit based on prospective randomized data) or I-B (prospective nonrandomized data).

TAKEAWAY:

  • The analyses focused on 50 molecular-targeted cancer drugs covering 84 indications. Of which, 45 indications (54%) were approved based on phase 1 or 2 pivotal trials, 45 (54%) were supported by single-arm pivotal trials and the remaining 39 (46%) by randomized trial, and 48 (57%) were approved based on subgroup analyses.
  • Among the 84 indications, more than half (55%) of the pivotal trials supporting approval used overall response rate as a primary endpoint, 31% used progression-free survival, and 6% used disease-free survival. Only seven indications (8%) were supported by pivotal trials demonstrating an improvement in overall survival.
  • Among the 84 trials, 24 (29%) met the ESMO-MCBS threshold for substantial clinical benefit.
  • Overall, when combining all ratings, only 24 of the 84 indications (29%) were considered high-benefit genomic-based cancer treatments.

IN PRACTICE:

“We applied the ESMO-MCBS and ESCAT value frameworks to identify therapies and molecular targets providing high clinical value that should be widely available to patients” and “found that drug indications supported by these characteristics represent a minority of cancer drug approvals in recent years,” the authors said. Using these value frameworks could help payers, governments, and individual patients “prioritize the availability of high-value molecular-targeted therapies.”

SOURCE:

The study, with first author Ariadna Tibau, MD, PhD, Brigham and Women’s Hospital and Harvard Medical School, Boston, was published online in JAMA Oncology.

LIMITATIONS:

The study evaluated only trials that supported regulatory approval and did not include outcomes of postapproval clinical studies, which could lead to changes in ESMO-MCBS grades and ESCAT levels of evidence over time.

DISCLOSURES:

The study was funded by the Kaiser Permanente Institute for Health Policy, Arnold Ventures, and the Commonwealth Fund. The authors had no relevant disclosures.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

An analysis of molecular-targeted cancer drug therapies recently approved in the United States found that fewer than one-third demonstrated substantial clinical benefits at the time of approval.

METHODOLOGY:

  • The strength and quality of evidence supporting genome-targeted cancer drug approvals vary. A big reason is the growing number of cancer drug approvals based on surrogate endpoints, such as disease-free and progression-free survival, instead of clinical endpoints, such as overall survival or quality of life. The US Food and Drug Administration (FDA) has also approved genome-targeted cancer drugs based on phase 1 or single-arm trials.
  • Given these less rigorous considerations for approval, “the validity and value of the targets and surrogate measures underlying FDA genome-targeted cancer drug approvals are uncertain,” the researchers explained.
  • In the current analysis, researchers assessed the validity of the molecular targets as well as the clinical benefits of genome-targeted cancer drugs approved in the United States from 2015 to 2022 based on results from pivotal trials.
  • The researchers evaluated the strength of evidence supporting molecular targetability using the European Society for Medical Oncology (ESMO) Scale for Clinical Actionability of Molecular Targets (ESCAT) and the clinical benefit using the ESMO–Magnitude of Clinical Benefit Scale (ESMO-MCBS).
  • The authors defined a substantial clinical benefit as an A or B grade for curative intent and a 4 or 5 for noncurative intent. High-benefit genomic-based cancer treatments were defined as those associated with a substantial clinical benefit (ESMO-MCBS) and that qualified as ESCAT category level I-A (a clinical benefit based on prospective randomized data) or I-B (prospective nonrandomized data).

TAKEAWAY:

  • The analyses focused on 50 molecular-targeted cancer drugs covering 84 indications. Of which, 45 indications (54%) were approved based on phase 1 or 2 pivotal trials, 45 (54%) were supported by single-arm pivotal trials and the remaining 39 (46%) by randomized trial, and 48 (57%) were approved based on subgroup analyses.
  • Among the 84 indications, more than half (55%) of the pivotal trials supporting approval used overall response rate as a primary endpoint, 31% used progression-free survival, and 6% used disease-free survival. Only seven indications (8%) were supported by pivotal trials demonstrating an improvement in overall survival.
  • Among the 84 trials, 24 (29%) met the ESMO-MCBS threshold for substantial clinical benefit.
  • Overall, when combining all ratings, only 24 of the 84 indications (29%) were considered high-benefit genomic-based cancer treatments.

IN PRACTICE:

“We applied the ESMO-MCBS and ESCAT value frameworks to identify therapies and molecular targets providing high clinical value that should be widely available to patients” and “found that drug indications supported by these characteristics represent a minority of cancer drug approvals in recent years,” the authors said. Using these value frameworks could help payers, governments, and individual patients “prioritize the availability of high-value molecular-targeted therapies.”

SOURCE:

The study, with first author Ariadna Tibau, MD, PhD, Brigham and Women’s Hospital and Harvard Medical School, Boston, was published online in JAMA Oncology.

LIMITATIONS:

The study evaluated only trials that supported regulatory approval and did not include outcomes of postapproval clinical studies, which could lead to changes in ESMO-MCBS grades and ESCAT levels of evidence over time.

DISCLOSURES:

The study was funded by the Kaiser Permanente Institute for Health Policy, Arnold Ventures, and the Commonwealth Fund. The authors had no relevant disclosures.

A version of this article appeared on Medscape.com.

 

TOPLINE:

An analysis of molecular-targeted cancer drug therapies recently approved in the United States found that fewer than one-third demonstrated substantial clinical benefits at the time of approval.

METHODOLOGY:

  • The strength and quality of evidence supporting genome-targeted cancer drug approvals vary. A big reason is the growing number of cancer drug approvals based on surrogate endpoints, such as disease-free and progression-free survival, instead of clinical endpoints, such as overall survival or quality of life. The US Food and Drug Administration (FDA) has also approved genome-targeted cancer drugs based on phase 1 or single-arm trials.
  • Given these less rigorous considerations for approval, “the validity and value of the targets and surrogate measures underlying FDA genome-targeted cancer drug approvals are uncertain,” the researchers explained.
  • In the current analysis, researchers assessed the validity of the molecular targets as well as the clinical benefits of genome-targeted cancer drugs approved in the United States from 2015 to 2022 based on results from pivotal trials.
  • The researchers evaluated the strength of evidence supporting molecular targetability using the European Society for Medical Oncology (ESMO) Scale for Clinical Actionability of Molecular Targets (ESCAT) and the clinical benefit using the ESMO–Magnitude of Clinical Benefit Scale (ESMO-MCBS).
  • The authors defined a substantial clinical benefit as an A or B grade for curative intent and a 4 or 5 for noncurative intent. High-benefit genomic-based cancer treatments were defined as those associated with a substantial clinical benefit (ESMO-MCBS) and that qualified as ESCAT category level I-A (a clinical benefit based on prospective randomized data) or I-B (prospective nonrandomized data).

TAKEAWAY:

  • The analyses focused on 50 molecular-targeted cancer drugs covering 84 indications. Of which, 45 indications (54%) were approved based on phase 1 or 2 pivotal trials, 45 (54%) were supported by single-arm pivotal trials and the remaining 39 (46%) by randomized trial, and 48 (57%) were approved based on subgroup analyses.
  • Among the 84 indications, more than half (55%) of the pivotal trials supporting approval used overall response rate as a primary endpoint, 31% used progression-free survival, and 6% used disease-free survival. Only seven indications (8%) were supported by pivotal trials demonstrating an improvement in overall survival.
  • Among the 84 trials, 24 (29%) met the ESMO-MCBS threshold for substantial clinical benefit.
  • Overall, when combining all ratings, only 24 of the 84 indications (29%) were considered high-benefit genomic-based cancer treatments.

IN PRACTICE:

“We applied the ESMO-MCBS and ESCAT value frameworks to identify therapies and molecular targets providing high clinical value that should be widely available to patients” and “found that drug indications supported by these characteristics represent a minority of cancer drug approvals in recent years,” the authors said. Using these value frameworks could help payers, governments, and individual patients “prioritize the availability of high-value molecular-targeted therapies.”

SOURCE:

The study, with first author Ariadna Tibau, MD, PhD, Brigham and Women’s Hospital and Harvard Medical School, Boston, was published online in JAMA Oncology.

LIMITATIONS:

The study evaluated only trials that supported regulatory approval and did not include outcomes of postapproval clinical studies, which could lead to changes in ESMO-MCBS grades and ESCAT levels of evidence over time.

DISCLOSURES:

The study was funded by the Kaiser Permanente Institute for Health Policy, Arnold Ventures, and the Commonwealth Fund. The authors had no relevant disclosures.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>167758</fileName> <TBEID>0C04FA8F.SIG</TBEID> <TBUniqueIdentifier>MD_0C04FA8F</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240417T163556</QCDate> <firstPublished>20240417T163834</firstPublished> <LastPublished>20240417T163835</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240417T163834</CMSDate> <articleSource/> <facebookInfo/> <meetingNumber/> <byline>Megan Brooks</byline> <bylineText>MEGAN BROOKS</bylineText> <bylineFull>MEGAN BROOKS</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>An analysis of molecular-targeted cancer drug therapies recently approved in the United States found that fewer than one-third demonstrated substantial clinical</metaDescription> <articlePDF/> <teaserImage/> <teaser>Researchers assess validity of the molecular targets and clinical benefits of genome-targeted cancer drugs approved in the United States from 2015 to 2022.</teaser> <title>Most Targeted Cancer Drugs Lack Substantial Clinical Benefit</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>oncr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>ob</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>chph</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>skin</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>hemn</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>GIHOLD</publicationCode> <pubIssueName>January 2014</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> </publications_g> <publications> <term canonical="true">31</term> <term>23</term> <term>6</term> <term>13</term> <term>22</term> <term>18</term> </publications> <sections> <term>37225</term> <term>39313</term> <term canonical="true">27970</term> </sections> <topics> <term>192</term> <term>198</term> <term>61821</term> <term>59244</term> <term>67020</term> <term>214</term> <term>217</term> <term>61642</term> <term>221</term> <term>232</term> <term>238</term> <term>240</term> <term>242</term> <term>39570</term> <term>244</term> <term>256</term> <term>245</term> <term>270</term> <term canonical="true">278</term> <term>280</term> <term>292</term> <term>31848</term> <term>271</term> <term>27442</term> <term>38029</term> <term>179</term> <term>178</term> <term>181</term> <term>59374</term> <term>195</term> <term>196</term> <term>197</term> <term>37637</term> <term>233</term> <term>243</term> <term>49434</term> <term>303</term> <term>250</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Most Targeted Cancer Drugs Lack Substantial Clinical Benefit</title> <deck/> </itemMeta> <itemContent> <h2>TOPLINE:</h2> <p> <span class="tag metaDescription">An analysis of molecular-targeted cancer drug therapies recently approved in the United States found that fewer than one-third demonstrated substantial clinical benefits at the time of approval.</span> </p> <h2>METHODOLOGY:</h2> <ul class="body"> <li>The strength and quality of evidence supporting genome-targeted cancer drug approvals vary. A big reason is the growing number of cancer drug approvals based on surrogate endpoints, such as disease-free and progression-free survival, instead of clinical endpoints, such as overall survival or quality of life. The US Food and Drug Administration (FDA) has also approved genome-targeted cancer drugs based on phase 1 or single-arm trials.</li> <li>Given these less rigorous considerations for approval, “the validity and value of the targets and surrogate measures underlying FDA genome-targeted cancer drug approvals are uncertain,” the researchers explained.</li> <li>In the current analysis, researchers assessed the validity of the molecular targets as well as the clinical benefits of genome-targeted cancer drugs approved in the United States from 2015 to 2022 based on results from pivotal trials.</li> <li>The researchers evaluated the strength of evidence supporting molecular targetability using the European Society for Medical Oncology (ESMO) Scale for Clinical Actionability of Molecular Targets (ESCAT) and the clinical benefit using the ESMO–Magnitude of Clinical Benefit Scale (ESMO-MCBS).</li> <li>The authors defined a substantial clinical benefit as an A or B grade for curative intent and a 4 or 5 for noncurative intent. High-benefit genomic-based cancer treatments were defined as those associated with a substantial clinical benefit (ESMO-MCBS) and that qualified as ESCAT category level I-A (a clinical benefit based on prospective randomized data) or I-B (prospective nonrandomized data).</li> </ul> <h2>TAKEAWAY:</h2> <ul class="body"> <li>The analyses focused on 50 molecular-targeted cancer drugs covering 84 indications. Of which, 45 indications (54%) were approved based on phase 1 or 2 pivotal trials, 45 (54%) were supported by single-arm pivotal trials and the remaining 39 (46%) by randomized trial, and 48 (57%) were approved based on subgroup analyses.</li> <li>Among the 84 indications, more than half (55%) of the pivotal trials supporting approval used overall response rate as a primary endpoint, 31% used progression-free survival, and 6% used disease-free survival. Only seven indications (8%) were supported by pivotal trials demonstrating an improvement in overall survival.</li> <li>Among the 84 trials, 24 (29%) met the ESMO-MCBS threshold for substantial clinical benefit.</li> <li>Overall, when combining all ratings, only 24 of the 84 indications (29%) were considered high-benefit genomic-based cancer treatments.</li> </ul> <h2>IN PRACTICE:</h2> <p>“We applied the ESMO-MCBS and ESCAT value frameworks to identify therapies and molecular targets providing high clinical value that should be widely available to patients” and “found that drug indications supported by these characteristics represent a minority of cancer drug approvals in recent years,” the authors said. Using these value frameworks could help payers, governments, and individual patients “prioritize the availability of high-value molecular-targeted therapies.”</p> <h2>SOURCE:</h2> <p>The study, with first author Ariadna Tibau, MD, PhD, Brigham and Women’s Hospital and Harvard Medical School, Boston, was <a href="https://jamanetwork.com/journals/jamaoncology/article-abstract/2817121">published online</a> in <em>JAMA Oncology</em>.</p> <h2>LIMITATIONS:</h2> <p>The study evaluated only trials that supported regulatory approval and did not include outcomes of postapproval clinical studies, which could lead to changes in ESMO-MCBS grades and ESCAT levels of evidence over time.</p> <h2>DISCLOSURES:</h2> <p>The study was funded by the Kaiser Permanente Institute for Health Policy, Arnold Ventures, and the Commonwealth Fund. The authors had no relevant disclosures.</p> <p> <em>A version of this article appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/most-targeted-cancer-drugs-lack-substantial-clinical-benefit-2024a10007bm">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

How Medicare Reimbursement Trends Could Affect Breast Surgeries

Article Type
Changed
Mon, 04/15/2024 - 16:02

Medicare reimbursement for common breast cancer surgeries decreased significantly over the past two decades, and the resulting shortage of funds could affect quality of care and access to services, especially for vulnerable patient populations.

These were findings of new research presented by Terry P. Gao, MD, at the American Society of Breast Surgeons annual meeting.

Medicare reimbursements often set a benchmark that is followed by private insurers, and the impact of changes on various breast surgeries have not been examined, Dr. Gao, a research resident at Temple University Hospital, Philadelphia, said during a press briefing in advance of the meeting.

“This study is important because it is the first to analyze trends in Medicare reimbursement for breast cancer surgery over a long period,” Dr. Gao said during an interview. The findings highlight a critical issue that could impact access to quality care, especially for vulnerable populations, she said.
 

How Were the Data Analyzed?

Dr. Gao and colleagues reviewed percent changes in reimbursement procedures over a 20-year period and compared them to changes in the consumer price index (CPI) to show the real-life impact of inflation.

The study examined reimbursements based on the Medicare Physician Fee Schedule Look-Up Tool from 2003 to 2023 for 10 procedures. The procedures were core needle biopsy, open incisional breast biopsy, open excisional breast biopsy, lumpectomy, lumpectomy with axillary lymph node dissection (ALND), simple mastectomy, radical mastectomy, modified radical mastectomy, biopsy/removal of lymph nodes, and sentinel lymph node biopsy.
 

What Does the New Study Show?

“Reimbursements did not keep pace with the price of goods and services,” Dr. Gao said during the press briefing.

After the researchers corrected data for inflation, the overall mean Medicare reimbursement for breast cancer surgeries decreased by approximately 21%, based in part on the 69% increase in the CPI over the study period, Dr. Gao said. The greatest change was in core needle biopsy, for which reimbursement decreased by 36%.

After inflation adjustment, reimbursement increases were seen for only two procedures, lumpectomy and simple mastectomy, of 0.37% and 3.58%, respectively, but these do not represent meaningful gains, Dr. Gao said.

The researchers also used a model to estimate the real-life impact of decreased reimbursement on clinicians. They subtracted the actual 2023 compensation from expected 2023 compensation based on inflation for a breast cancer case incidence of 297,790 patients who underwent axillary surgery, breast lumpectomy, or simple mastectomy. The calculated potential real-world compensation loss for that year was $107,604,444.
 

What are the Clinical Implications? 

The current study is the first to put specific numbers on the trend in declining breast cancer payments, and the findings should encourage physicians to advocate for equitable policies, Dr. Gao noted during the briefing.

The substantial decrease in inflation-adjusted reimbursement rates was significant, she said during the interview. Although the decrease reflects similar trends seen in other specialties, the magnitude is a potential cause for concern, she said.

Declining reimbursements could disproportionately hurt safety-net hospitals serving vulnerable populations by limiting their ability to invest in better care and potentially worsening existing racial disparities, Dr. Gao told this publication. “Additionally, surgeons may opt out of Medicare networks due to low rates, leading to access issues and longer wait times. Finally, these trends could discourage future generations from specializing in breast cancer surgery.”

The study findings should be considered in the context of the complex and rapidly changing clinical landscape in which breast cancer care is evolving, Mediget Teshome, MD, chief of breast surgery at UCLA Health, said during an interview.

“Surgery remains a critically important aspect to curative treatment,” Dr. Teshome said.

Surgical decision-making tailored to each patient’s goals involves coordination from a multidisciplinary team as well as skill and attention from surgeons, she added.

“This degree of specialization and nuance is not always captured in reimbursement models for breast surgery,” Dr. Teshome emphasized. The policy implications of any changes in Medicare reimbursement will be important given the American Cancer Society reports breast cancer as the most commonly diagnosed cancer in women in the United States, and as the second leading cause of cancer death in US women, she noted.
 

What Additional Research Is Needed?

Research is needed to understand how declining reimbursements affect patients’ access to care, treatment choices, and long-term outcomes, Dr. Gao said in the interview. Future studies also are needed to examine provider overhead costs, staffing structures, and profit margins to offer a more comprehensive understanding of financial sustainability.

Dr. Gao and Dr. Teshome had no financial conflicts to disclose.

Publications
Topics
Sections

Medicare reimbursement for common breast cancer surgeries decreased significantly over the past two decades, and the resulting shortage of funds could affect quality of care and access to services, especially for vulnerable patient populations.

These were findings of new research presented by Terry P. Gao, MD, at the American Society of Breast Surgeons annual meeting.

Medicare reimbursements often set a benchmark that is followed by private insurers, and the impact of changes on various breast surgeries have not been examined, Dr. Gao, a research resident at Temple University Hospital, Philadelphia, said during a press briefing in advance of the meeting.

“This study is important because it is the first to analyze trends in Medicare reimbursement for breast cancer surgery over a long period,” Dr. Gao said during an interview. The findings highlight a critical issue that could impact access to quality care, especially for vulnerable populations, she said.
 

How Were the Data Analyzed?

Dr. Gao and colleagues reviewed percent changes in reimbursement procedures over a 20-year period and compared them to changes in the consumer price index (CPI) to show the real-life impact of inflation.

The study examined reimbursements based on the Medicare Physician Fee Schedule Look-Up Tool from 2003 to 2023 for 10 procedures. The procedures were core needle biopsy, open incisional breast biopsy, open excisional breast biopsy, lumpectomy, lumpectomy with axillary lymph node dissection (ALND), simple mastectomy, radical mastectomy, modified radical mastectomy, biopsy/removal of lymph nodes, and sentinel lymph node biopsy.
 

What Does the New Study Show?

“Reimbursements did not keep pace with the price of goods and services,” Dr. Gao said during the press briefing.

After the researchers corrected data for inflation, the overall mean Medicare reimbursement for breast cancer surgeries decreased by approximately 21%, based in part on the 69% increase in the CPI over the study period, Dr. Gao said. The greatest change was in core needle biopsy, for which reimbursement decreased by 36%.

After inflation adjustment, reimbursement increases were seen for only two procedures, lumpectomy and simple mastectomy, of 0.37% and 3.58%, respectively, but these do not represent meaningful gains, Dr. Gao said.

The researchers also used a model to estimate the real-life impact of decreased reimbursement on clinicians. They subtracted the actual 2023 compensation from expected 2023 compensation based on inflation for a breast cancer case incidence of 297,790 patients who underwent axillary surgery, breast lumpectomy, or simple mastectomy. The calculated potential real-world compensation loss for that year was $107,604,444.
 

What are the Clinical Implications? 

The current study is the first to put specific numbers on the trend in declining breast cancer payments, and the findings should encourage physicians to advocate for equitable policies, Dr. Gao noted during the briefing.

The substantial decrease in inflation-adjusted reimbursement rates was significant, she said during the interview. Although the decrease reflects similar trends seen in other specialties, the magnitude is a potential cause for concern, she said.

Declining reimbursements could disproportionately hurt safety-net hospitals serving vulnerable populations by limiting their ability to invest in better care and potentially worsening existing racial disparities, Dr. Gao told this publication. “Additionally, surgeons may opt out of Medicare networks due to low rates, leading to access issues and longer wait times. Finally, these trends could discourage future generations from specializing in breast cancer surgery.”

The study findings should be considered in the context of the complex and rapidly changing clinical landscape in which breast cancer care is evolving, Mediget Teshome, MD, chief of breast surgery at UCLA Health, said during an interview.

“Surgery remains a critically important aspect to curative treatment,” Dr. Teshome said.

Surgical decision-making tailored to each patient’s goals involves coordination from a multidisciplinary team as well as skill and attention from surgeons, she added.

“This degree of specialization and nuance is not always captured in reimbursement models for breast surgery,” Dr. Teshome emphasized. The policy implications of any changes in Medicare reimbursement will be important given the American Cancer Society reports breast cancer as the most commonly diagnosed cancer in women in the United States, and as the second leading cause of cancer death in US women, she noted.
 

What Additional Research Is Needed?

Research is needed to understand how declining reimbursements affect patients’ access to care, treatment choices, and long-term outcomes, Dr. Gao said in the interview. Future studies also are needed to examine provider overhead costs, staffing structures, and profit margins to offer a more comprehensive understanding of financial sustainability.

Dr. Gao and Dr. Teshome had no financial conflicts to disclose.

Medicare reimbursement for common breast cancer surgeries decreased significantly over the past two decades, and the resulting shortage of funds could affect quality of care and access to services, especially for vulnerable patient populations.

These were findings of new research presented by Terry P. Gao, MD, at the American Society of Breast Surgeons annual meeting.

Medicare reimbursements often set a benchmark that is followed by private insurers, and the impact of changes on various breast surgeries have not been examined, Dr. Gao, a research resident at Temple University Hospital, Philadelphia, said during a press briefing in advance of the meeting.

“This study is important because it is the first to analyze trends in Medicare reimbursement for breast cancer surgery over a long period,” Dr. Gao said during an interview. The findings highlight a critical issue that could impact access to quality care, especially for vulnerable populations, she said.
 

How Were the Data Analyzed?

Dr. Gao and colleagues reviewed percent changes in reimbursement procedures over a 20-year period and compared them to changes in the consumer price index (CPI) to show the real-life impact of inflation.

The study examined reimbursements based on the Medicare Physician Fee Schedule Look-Up Tool from 2003 to 2023 for 10 procedures. The procedures were core needle biopsy, open incisional breast biopsy, open excisional breast biopsy, lumpectomy, lumpectomy with axillary lymph node dissection (ALND), simple mastectomy, radical mastectomy, modified radical mastectomy, biopsy/removal of lymph nodes, and sentinel lymph node biopsy.
 

What Does the New Study Show?

“Reimbursements did not keep pace with the price of goods and services,” Dr. Gao said during the press briefing.

After the researchers corrected data for inflation, the overall mean Medicare reimbursement for breast cancer surgeries decreased by approximately 21%, based in part on the 69% increase in the CPI over the study period, Dr. Gao said. The greatest change was in core needle biopsy, for which reimbursement decreased by 36%.

After inflation adjustment, reimbursement increases were seen for only two procedures, lumpectomy and simple mastectomy, of 0.37% and 3.58%, respectively, but these do not represent meaningful gains, Dr. Gao said.

The researchers also used a model to estimate the real-life impact of decreased reimbursement on clinicians. They subtracted the actual 2023 compensation from expected 2023 compensation based on inflation for a breast cancer case incidence of 297,790 patients who underwent axillary surgery, breast lumpectomy, or simple mastectomy. The calculated potential real-world compensation loss for that year was $107,604,444.
 

What are the Clinical Implications? 

The current study is the first to put specific numbers on the trend in declining breast cancer payments, and the findings should encourage physicians to advocate for equitable policies, Dr. Gao noted during the briefing.

The substantial decrease in inflation-adjusted reimbursement rates was significant, she said during the interview. Although the decrease reflects similar trends seen in other specialties, the magnitude is a potential cause for concern, she said.

Declining reimbursements could disproportionately hurt safety-net hospitals serving vulnerable populations by limiting their ability to invest in better care and potentially worsening existing racial disparities, Dr. Gao told this publication. “Additionally, surgeons may opt out of Medicare networks due to low rates, leading to access issues and longer wait times. Finally, these trends could discourage future generations from specializing in breast cancer surgery.”

The study findings should be considered in the context of the complex and rapidly changing clinical landscape in which breast cancer care is evolving, Mediget Teshome, MD, chief of breast surgery at UCLA Health, said during an interview.

“Surgery remains a critically important aspect to curative treatment,” Dr. Teshome said.

Surgical decision-making tailored to each patient’s goals involves coordination from a multidisciplinary team as well as skill and attention from surgeons, she added.

“This degree of specialization and nuance is not always captured in reimbursement models for breast surgery,” Dr. Teshome emphasized. The policy implications of any changes in Medicare reimbursement will be important given the American Cancer Society reports breast cancer as the most commonly diagnosed cancer in women in the United States, and as the second leading cause of cancer death in US women, she noted.
 

What Additional Research Is Needed?

Research is needed to understand how declining reimbursements affect patients’ access to care, treatment choices, and long-term outcomes, Dr. Gao said in the interview. Future studies also are needed to examine provider overhead costs, staffing structures, and profit margins to offer a more comprehensive understanding of financial sustainability.

Dr. Gao and Dr. Teshome had no financial conflicts to disclose.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>167716</fileName> <TBEID>0C04F958.SIG</TBEID> <TBUniqueIdentifier>MD_0C04F958</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname>ASBS reimbursement4.12.24</storyname> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240415T155644</QCDate> <firstPublished>20240415T155818</firstPublished> <LastPublished>20240415T155818</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240415T155818</CMSDate> <articleSource>FROM THE AMERICAN SOCIETY OF BREAST SURGEONS ANNUAL MEETING</articleSource> <facebookInfo/> <meetingNumber/> <byline>Heidi Splete</byline> <bylineText>HEIDI SPLETE</bylineText> <bylineFull>HEIDI SPLETE</bylineFull> <bylineTitleText>MDedge News</bylineTitleText> <USOrGlobal/> <wireDocType/> <newsDocType>Feature</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>Medicare reimbursement for common breast cancer surgeries decreased significantly over the past two decades, and the resulting shortage of funds could affect qu</metaDescription> <articlePDF/> <teaserImage/> <teaser>A new study showed a decline in Medicare reimbursements for breast cancer surgery by more than 20% from 2003 to 2023.</teaser> <title>How Medicare Reimbursement Trends Could Affect Breast Surgeries</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>oncr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>ob</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>mdsurg</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> </publications_g> <publications> <term canonical="true">31</term> <term>23</term> <term>52226</term> </publications> <sections> <term>27980</term> <term>39313</term> <term canonical="true">53</term> </sections> <topics> <term canonical="true">278</term> <term>192</term> <term>39570</term> <term>270</term> <term>38029</term> <term>263</term> <term>340</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>How Medicare Reimbursement Trends Could Affect Breast Surgeries</title> <deck/> </itemMeta> <itemContent> <p> <span class="tag metaDescription">Medicare reimbursement for common breast cancer surgeries decreased significantly over the past two decades, and the resulting shortage of funds could affect quality of care and access to services, especially for vulnerable patient populations.</span> </p> <p>These were findings of new research presented by Terry P. Gao, MD, at the American Society of Breast Surgeons annual meeting.<br/><br/>Medicare reimbursements often set a benchmark that is followed by private insurers, and the impact of changes on various breast surgeries have not been examined, Dr. Gao, a research resident at Temple University Hospital, Philadelphia, said during a press briefing in advance of the meeting. <br/><br/>“This study is important because it is the first to analyze trends in Medicare reimbursement for breast cancer surgery over a long period,” Dr. Gao said during an interview. The findings highlight a critical issue that could impact access to quality care, especially for vulnerable populations, she said.<br/><br/></p> <h2>How Were the Data Analyzed? </h2> <p>Dr. Gao and colleagues reviewed percent changes in reimbursement procedures over a 20-year period and compared them to changes in the consumer price index (CPI) to show the real-life impact of inflation. </p> <p>The study examined reimbursements based on the Medicare Physician Fee Schedule Look-Up Tool from 2003 to 2023 for 10 procedures. The procedures were core needle biopsy, open incisional breast biopsy, open excisional breast biopsy, lumpectomy, lumpectomy with axillary lymph node dissection (ALND), simple mastectomy, radical mastectomy, modified radical mastectomy, biopsy/removal of lymph nodes, and sentinel lymph node biopsy.<br/><br/></p> <h2>What Does the New Study Show? </h2> <p>“Reimbursements did not keep pace with the price of goods and services,” Dr. Gao said during the press briefing. </p> <p>After the researchers corrected data for inflation, the overall mean Medicare reimbursement for breast cancer surgeries decreased by approximately 21%, based in part on the 69% increase in the CPI over the study period, Dr. Gao said. The greatest change was in core needle biopsy, for which reimbursement decreased by 36%. <br/><br/>After inflation adjustment, reimbursement increases were seen for only two procedures, lumpectomy and simple mastectomy, of 0.37% and 3.58%, respectively, but these do not represent meaningful gains, Dr. Gao said. <br/><br/>The researchers also used a model to estimate the real-life impact of decreased reimbursement on clinicians. They subtracted the actual 2023 compensation from expected 2023 compensation based on inflation for a breast cancer case incidence of 297,790 patients who underwent axillary surgery, breast lumpectomy, or simple mastectomy. The calculated potential real-world compensation loss for that year was $107,604,444. <br/><br/></p> <h2>What are the Clinical Implications? </h2> <p>The current study is the first to put specific numbers on the trend in declining breast cancer payments, and the findings should encourage physicians to advocate for equitable policies, Dr. Gao noted during the briefing. </p> <p>The substantial decrease in inflation-adjusted reimbursement rates was significant, she said during the interview. Although the decrease reflects similar trends seen in other specialties, the magnitude is a potential cause for concern, she said. <br/><br/>Declining reimbursements could disproportionately hurt safety-net hospitals serving vulnerable populations by limiting their ability to invest in better care and potentially worsening existing racial disparities, Dr. Gao told this publication. “Additionally, surgeons may opt out of Medicare networks due to low rates, leading to access issues and longer wait times. Finally, these trends could discourage future generations from specializing in breast cancer surgery.”<br/><br/>The study findings should be considered in the context of the complex and rapidly changing clinical landscape in which breast cancer care is evolving, Mediget Teshome, MD, chief of breast surgery at UCLA Health, said during an interview.<br/><br/>“Surgery remains a critically important aspect to curative treatment,” Dr. Teshome said. <br/><br/>Surgical decision-making tailored to each patient’s goals involves coordination from a multidisciplinary team as well as skill and attention from surgeons, she added. <br/><br/>“This degree of specialization and nuance is not always captured in reimbursement models for breast surgery,” Dr. Teshome emphasized. The policy implications of any changes in Medicare reimbursement will be important given the American Cancer Society reports breast cancer as the most commonly diagnosed cancer in women in the United States, and as the second leading cause of cancer death in US women, she noted. <br/><br/></p> <h2>What Additional Research Is Needed?</h2> <p>Research is needed to understand how declining reimbursements affect patients’ access to care, treatment choices, and long-term outcomes, Dr. Gao said in the interview. Future studies also are needed to examine provider overhead costs, staffing structures, and profit margins to offer a more comprehensive understanding of financial sustainability. </p> <p>Dr. Gao and Dr. Teshome had no financial conflicts to disclose. </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Article Source

FROM THE AMERICAN SOCIETY OF BREAST SURGEONS ANNUAL MEETING

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

No Routine Cancer Screening Option? New MCED Tests May Help

Article Type
Changed
Mon, 04/15/2024 - 17:56

 

Early data suggested that several new multicancer early detection (MCED) tests in development show promise for identifying cancers that lack routine screening options.

Analyses presented during a session at the American Association for Cancer Research annual meeting, revealed that three new MCED tests — CanScan, MERCURY, and OncoSeek — could detect a range of cancers and recognize the tissue of origin with high accuracy. One — OncoSeek — could also provide an affordable cancer screening option for individuals living in lower-income countries.

The need for these noninvasive liquid biopsy tests that can accurately identify multiple cancer types with a single blood draw, especially cancers without routine screening strategies, is pressing. “We know that the current cancer standard of care screening will identify less than 50% of all cancers, while more than 50% of all cancer deaths occur in types of cancer with no recommended screening,” said co-moderator Marie E. Wood, MD, of the University of Colorado Anschutz Medical Campus, in Aurora, Colorado.

That being said, “the clinical utility of multicancer detection tests has not been established and we’re concerned about issues of overdiagnosis and overtreatment,” she noted.

The Early Data 

One new MCED test called CanScan, developed by Geneseeq Technology, uses plasma cell-free DNA fragment patterns to detect cancer signals as well as identify the tissue of origin across 13 cancer types.

Overall, the CanScan test covers cancer types that contribute to two thirds of new cancer cases and 74% of morality globally, said presenter Shanshan Yang, of Geneseeq Research Institute, in Nanjing, China.

However, only five of these cancer types have screening recommendations issued by the US Preventive Services Task Force (USPSTF), Dr. Yang added.

The interim data comes from an ongoing large-scale prospective study evaluating the MCED test in a cohort of asymptomatic individuals between ages 45 and 75 years with an average risk for cancer and no cancer-related symptoms on enrollment.

Patients at baseline had their blood collected for the CanScan test and subsequently received annual routine physical exams once a year for 3 consecutive years, with an additional 2 years of follow-up. 

The analysis included 3724 participants with analyzable samples at the data cutoff in September 2023. Among the 3724 participants, 29 had confirmed cancer diagnoses. Among these cases, 14 patients had their cancer confirmed through USPSTF recommended screening and 15 were detected through outside of standard USPSTF screening, such as a thyroid ultrasound, Dr. Yang explained.

Almost 90% of the cancers (26 of 29) were detected in the stage I or II, and eight (27.5%) were not one of the test’s 13 targeted cancer types.

The CanScan test had a sensitivity of 55.2%, identifying 16 of 29 of the patients with cancer, including 10 of 21 individuals with stage I (47.6%), and two of three with stage II (66.7%). 

The test had a high specificity of 97.9%, meaning out of 100 people screened, only two had false negative findings.

Among the 15 patients who had their cancer detected outside of USPSTF screening recommendations, eight (53.3%) were found using a CanScan test, including patients with liver and endometrial cancers.

Compared with a positive predictive value of (PPV) of 1.6% with screening or physical exam methods alone, the CanScan test had a PPV of 17.4%, Dr. Yang reported. 

“The MCED test holds significant potential for early cancer screening in asymptomatic populations,” Dr. Yang and colleagues concluded.

Another new MCED test called MERCURY, also developed by Geneseeq Technology and presented during the session, used a similar method to detect cancer signals and predict the tissue of origin across 13 cancer types.

The researchers initially validated the test using 3076 patients with cancer and 3477 healthy controls with a target specificity of 99%. In this group, researchers reported a sensitivity of 0.865 and a specificity of 0.989.

The team then performed an independent validation analysis with 1465 participants, 732 with cancer and 733 with no cancer, and confirmed a high sensitivity and specificity of 0.874 and 0.978, respectively. The sensitivity increased incrementally by cancer stage — 0.768 for stage I, 0.840 for stage II, 0.923 for stage III, and 0.971 for stage IV.

The test identified the tissue of origin with high accuracy, the researchers noted, but cautioned that the test needs “to be further validated in a prospective cohort study.”

 

 

MCED in Low-Income Settings

The session also featured findings on a new affordable MCED test called OncoSeek, which could provide greater access to cancer testing in low- and middle-income countries.

The OncoSeek algorithm identifies the presence of cancer using seven protein tumor markers alongside clinical information, such as gender and age. Like other tests, the test also predicts the possible tissue of origin.

The test can be run on clinical protein assay instruments that are already widely available, such as Roche cobas analyzer, Mao Mao, MD, PhD, the founder and CEO of SeekIn, of Shenzhen, China, told this news organization.

This “feature makes the test accessible worldwide, even in low- and middle-income countries,” he said. “These instruments are fully-automated and part of today’s clinical practice. Therefore, the test does not require additional infrastructure building and lab personal training.”

Another notable advantage: the OncoSeek test only costs about $20, compared with other MCED tests, which can cost anywhere from $200 to $1000.

To validate the technology in a large, diverse cohort, Dr. Mao and colleagues enrolled approximately 10,000 participants, including 2003 cancer cases and 7888 non-cancer cases.

Peripheral blood was collected from each participant and analyzed using a panel of the seven protein tumor markers — AFP, CA125, CA15-3, CA19-9, CA72-4, CEA, and CYFRA 21-1.

To reduce the risk for false positive findings, the team designed the OncoSeek algorithm to achieve a specificity of 93%. Dr. Mao and colleagues found a sensitivity of 51.7%, resulting in an overall accuracy of 84.6%.

The performance was consistent in additional validation cohorts in Brazil, China, and the United States, with sensitivities ranging from 39.0% to 77.6% for detecting nine common cancer types, including breast, colorectal, liver, lung, lymphoma, esophagus, ovary, pancreas, and stomach. The sensitivity for pancreatic cancer was at the high end of 77.6%.

The test could predict the tissue of origin in about two thirds of cases. 

Given its low cost, OncoSeek represents an affordable and accessible option for cancer screening, the authors concluded. 

Overall, “I think MCEDs have the potential to enhance cancer screening,” Dr. Wood told this news organization.

Still, questions remain about the optimal use of these tests, such as whether they are best for average-risk or higher risk populations, and how to integrate them into standard screening, she said. 

Dr. Wood also cautioned that the studies presented in the session represent early data, and it is likely that the numbers, such as sensitivity and specificity, will change with further prospective analyses.

And ultimately, these tests should complement, not replace, standard screening. “A negative testing should not be taken as a sign to avoid standard screening,” Dr. Wood said.

Dr. Yang is an employee of Geneseeq Technology, Inc., and Dr. Mao is an employee of SeekIn. Dr. Wood had no disclosures to report.

A version of this article appeared on Medscape.com.

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

 

Early data suggested that several new multicancer early detection (MCED) tests in development show promise for identifying cancers that lack routine screening options.

Analyses presented during a session at the American Association for Cancer Research annual meeting, revealed that three new MCED tests — CanScan, MERCURY, and OncoSeek — could detect a range of cancers and recognize the tissue of origin with high accuracy. One — OncoSeek — could also provide an affordable cancer screening option for individuals living in lower-income countries.

The need for these noninvasive liquid biopsy tests that can accurately identify multiple cancer types with a single blood draw, especially cancers without routine screening strategies, is pressing. “We know that the current cancer standard of care screening will identify less than 50% of all cancers, while more than 50% of all cancer deaths occur in types of cancer with no recommended screening,” said co-moderator Marie E. Wood, MD, of the University of Colorado Anschutz Medical Campus, in Aurora, Colorado.

That being said, “the clinical utility of multicancer detection tests has not been established and we’re concerned about issues of overdiagnosis and overtreatment,” she noted.

The Early Data 

One new MCED test called CanScan, developed by Geneseeq Technology, uses plasma cell-free DNA fragment patterns to detect cancer signals as well as identify the tissue of origin across 13 cancer types.

Overall, the CanScan test covers cancer types that contribute to two thirds of new cancer cases and 74% of morality globally, said presenter Shanshan Yang, of Geneseeq Research Institute, in Nanjing, China.

However, only five of these cancer types have screening recommendations issued by the US Preventive Services Task Force (USPSTF), Dr. Yang added.

The interim data comes from an ongoing large-scale prospective study evaluating the MCED test in a cohort of asymptomatic individuals between ages 45 and 75 years with an average risk for cancer and no cancer-related symptoms on enrollment.

Patients at baseline had their blood collected for the CanScan test and subsequently received annual routine physical exams once a year for 3 consecutive years, with an additional 2 years of follow-up. 

The analysis included 3724 participants with analyzable samples at the data cutoff in September 2023. Among the 3724 participants, 29 had confirmed cancer diagnoses. Among these cases, 14 patients had their cancer confirmed through USPSTF recommended screening and 15 were detected through outside of standard USPSTF screening, such as a thyroid ultrasound, Dr. Yang explained.

Almost 90% of the cancers (26 of 29) were detected in the stage I or II, and eight (27.5%) were not one of the test’s 13 targeted cancer types.

The CanScan test had a sensitivity of 55.2%, identifying 16 of 29 of the patients with cancer, including 10 of 21 individuals with stage I (47.6%), and two of three with stage II (66.7%). 

The test had a high specificity of 97.9%, meaning out of 100 people screened, only two had false negative findings.

Among the 15 patients who had their cancer detected outside of USPSTF screening recommendations, eight (53.3%) were found using a CanScan test, including patients with liver and endometrial cancers.

Compared with a positive predictive value of (PPV) of 1.6% with screening or physical exam methods alone, the CanScan test had a PPV of 17.4%, Dr. Yang reported. 

“The MCED test holds significant potential for early cancer screening in asymptomatic populations,” Dr. Yang and colleagues concluded.

Another new MCED test called MERCURY, also developed by Geneseeq Technology and presented during the session, used a similar method to detect cancer signals and predict the tissue of origin across 13 cancer types.

The researchers initially validated the test using 3076 patients with cancer and 3477 healthy controls with a target specificity of 99%. In this group, researchers reported a sensitivity of 0.865 and a specificity of 0.989.

The team then performed an independent validation analysis with 1465 participants, 732 with cancer and 733 with no cancer, and confirmed a high sensitivity and specificity of 0.874 and 0.978, respectively. The sensitivity increased incrementally by cancer stage — 0.768 for stage I, 0.840 for stage II, 0.923 for stage III, and 0.971 for stage IV.

The test identified the tissue of origin with high accuracy, the researchers noted, but cautioned that the test needs “to be further validated in a prospective cohort study.”

 

 

MCED in Low-Income Settings

The session also featured findings on a new affordable MCED test called OncoSeek, which could provide greater access to cancer testing in low- and middle-income countries.

The OncoSeek algorithm identifies the presence of cancer using seven protein tumor markers alongside clinical information, such as gender and age. Like other tests, the test also predicts the possible tissue of origin.

The test can be run on clinical protein assay instruments that are already widely available, such as Roche cobas analyzer, Mao Mao, MD, PhD, the founder and CEO of SeekIn, of Shenzhen, China, told this news organization.

This “feature makes the test accessible worldwide, even in low- and middle-income countries,” he said. “These instruments are fully-automated and part of today’s clinical practice. Therefore, the test does not require additional infrastructure building and lab personal training.”

Another notable advantage: the OncoSeek test only costs about $20, compared with other MCED tests, which can cost anywhere from $200 to $1000.

To validate the technology in a large, diverse cohort, Dr. Mao and colleagues enrolled approximately 10,000 participants, including 2003 cancer cases and 7888 non-cancer cases.

Peripheral blood was collected from each participant and analyzed using a panel of the seven protein tumor markers — AFP, CA125, CA15-3, CA19-9, CA72-4, CEA, and CYFRA 21-1.

To reduce the risk for false positive findings, the team designed the OncoSeek algorithm to achieve a specificity of 93%. Dr. Mao and colleagues found a sensitivity of 51.7%, resulting in an overall accuracy of 84.6%.

The performance was consistent in additional validation cohorts in Brazil, China, and the United States, with sensitivities ranging from 39.0% to 77.6% for detecting nine common cancer types, including breast, colorectal, liver, lung, lymphoma, esophagus, ovary, pancreas, and stomach. The sensitivity for pancreatic cancer was at the high end of 77.6%.

The test could predict the tissue of origin in about two thirds of cases. 

Given its low cost, OncoSeek represents an affordable and accessible option for cancer screening, the authors concluded. 

Overall, “I think MCEDs have the potential to enhance cancer screening,” Dr. Wood told this news organization.

Still, questions remain about the optimal use of these tests, such as whether they are best for average-risk or higher risk populations, and how to integrate them into standard screening, she said. 

Dr. Wood also cautioned that the studies presented in the session represent early data, and it is likely that the numbers, such as sensitivity and specificity, will change with further prospective analyses.

And ultimately, these tests should complement, not replace, standard screening. “A negative testing should not be taken as a sign to avoid standard screening,” Dr. Wood said.

Dr. Yang is an employee of Geneseeq Technology, Inc., and Dr. Mao is an employee of SeekIn. Dr. Wood had no disclosures to report.

A version of this article appeared on Medscape.com.

 

Early data suggested that several new multicancer early detection (MCED) tests in development show promise for identifying cancers that lack routine screening options.

Analyses presented during a session at the American Association for Cancer Research annual meeting, revealed that three new MCED tests — CanScan, MERCURY, and OncoSeek — could detect a range of cancers and recognize the tissue of origin with high accuracy. One — OncoSeek — could also provide an affordable cancer screening option for individuals living in lower-income countries.

The need for these noninvasive liquid biopsy tests that can accurately identify multiple cancer types with a single blood draw, especially cancers without routine screening strategies, is pressing. “We know that the current cancer standard of care screening will identify less than 50% of all cancers, while more than 50% of all cancer deaths occur in types of cancer with no recommended screening,” said co-moderator Marie E. Wood, MD, of the University of Colorado Anschutz Medical Campus, in Aurora, Colorado.

That being said, “the clinical utility of multicancer detection tests has not been established and we’re concerned about issues of overdiagnosis and overtreatment,” she noted.

The Early Data 

One new MCED test called CanScan, developed by Geneseeq Technology, uses plasma cell-free DNA fragment patterns to detect cancer signals as well as identify the tissue of origin across 13 cancer types.

Overall, the CanScan test covers cancer types that contribute to two thirds of new cancer cases and 74% of morality globally, said presenter Shanshan Yang, of Geneseeq Research Institute, in Nanjing, China.

However, only five of these cancer types have screening recommendations issued by the US Preventive Services Task Force (USPSTF), Dr. Yang added.

The interim data comes from an ongoing large-scale prospective study evaluating the MCED test in a cohort of asymptomatic individuals between ages 45 and 75 years with an average risk for cancer and no cancer-related symptoms on enrollment.

Patients at baseline had their blood collected for the CanScan test and subsequently received annual routine physical exams once a year for 3 consecutive years, with an additional 2 years of follow-up. 

The analysis included 3724 participants with analyzable samples at the data cutoff in September 2023. Among the 3724 participants, 29 had confirmed cancer diagnoses. Among these cases, 14 patients had their cancer confirmed through USPSTF recommended screening and 15 were detected through outside of standard USPSTF screening, such as a thyroid ultrasound, Dr. Yang explained.

Almost 90% of the cancers (26 of 29) were detected in the stage I or II, and eight (27.5%) were not one of the test’s 13 targeted cancer types.

The CanScan test had a sensitivity of 55.2%, identifying 16 of 29 of the patients with cancer, including 10 of 21 individuals with stage I (47.6%), and two of three with stage II (66.7%). 

The test had a high specificity of 97.9%, meaning out of 100 people screened, only two had false negative findings.

Among the 15 patients who had their cancer detected outside of USPSTF screening recommendations, eight (53.3%) were found using a CanScan test, including patients with liver and endometrial cancers.

Compared with a positive predictive value of (PPV) of 1.6% with screening or physical exam methods alone, the CanScan test had a PPV of 17.4%, Dr. Yang reported. 

“The MCED test holds significant potential for early cancer screening in asymptomatic populations,” Dr. Yang and colleagues concluded.

Another new MCED test called MERCURY, also developed by Geneseeq Technology and presented during the session, used a similar method to detect cancer signals and predict the tissue of origin across 13 cancer types.

The researchers initially validated the test using 3076 patients with cancer and 3477 healthy controls with a target specificity of 99%. In this group, researchers reported a sensitivity of 0.865 and a specificity of 0.989.

The team then performed an independent validation analysis with 1465 participants, 732 with cancer and 733 with no cancer, and confirmed a high sensitivity and specificity of 0.874 and 0.978, respectively. The sensitivity increased incrementally by cancer stage — 0.768 for stage I, 0.840 for stage II, 0.923 for stage III, and 0.971 for stage IV.

The test identified the tissue of origin with high accuracy, the researchers noted, but cautioned that the test needs “to be further validated in a prospective cohort study.”

 

 

MCED in Low-Income Settings

The session also featured findings on a new affordable MCED test called OncoSeek, which could provide greater access to cancer testing in low- and middle-income countries.

The OncoSeek algorithm identifies the presence of cancer using seven protein tumor markers alongside clinical information, such as gender and age. Like other tests, the test also predicts the possible tissue of origin.

The test can be run on clinical protein assay instruments that are already widely available, such as Roche cobas analyzer, Mao Mao, MD, PhD, the founder and CEO of SeekIn, of Shenzhen, China, told this news organization.

This “feature makes the test accessible worldwide, even in low- and middle-income countries,” he said. “These instruments are fully-automated and part of today’s clinical practice. Therefore, the test does not require additional infrastructure building and lab personal training.”

Another notable advantage: the OncoSeek test only costs about $20, compared with other MCED tests, which can cost anywhere from $200 to $1000.

To validate the technology in a large, diverse cohort, Dr. Mao and colleagues enrolled approximately 10,000 participants, including 2003 cancer cases and 7888 non-cancer cases.

Peripheral blood was collected from each participant and analyzed using a panel of the seven protein tumor markers — AFP, CA125, CA15-3, CA19-9, CA72-4, CEA, and CYFRA 21-1.

To reduce the risk for false positive findings, the team designed the OncoSeek algorithm to achieve a specificity of 93%. Dr. Mao and colleagues found a sensitivity of 51.7%, resulting in an overall accuracy of 84.6%.

The performance was consistent in additional validation cohorts in Brazil, China, and the United States, with sensitivities ranging from 39.0% to 77.6% for detecting nine common cancer types, including breast, colorectal, liver, lung, lymphoma, esophagus, ovary, pancreas, and stomach. The sensitivity for pancreatic cancer was at the high end of 77.6%.

The test could predict the tissue of origin in about two thirds of cases. 

Given its low cost, OncoSeek represents an affordable and accessible option for cancer screening, the authors concluded. 

Overall, “I think MCEDs have the potential to enhance cancer screening,” Dr. Wood told this news organization.

Still, questions remain about the optimal use of these tests, such as whether they are best for average-risk or higher risk populations, and how to integrate them into standard screening, she said. 

Dr. Wood also cautioned that the studies presented in the session represent early data, and it is likely that the numbers, such as sensitivity and specificity, will change with further prospective analyses.

And ultimately, these tests should complement, not replace, standard screening. “A negative testing should not be taken as a sign to avoid standard screening,” Dr. Wood said.

Dr. Yang is an employee of Geneseeq Technology, Inc., and Dr. Mao is an employee of SeekIn. Dr. Wood had no disclosures to report.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>167699</fileName> <TBEID>0C04F8D5.SIG</TBEID> <TBUniqueIdentifier>MD_0C04F8D5</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240415T143741</QCDate> <firstPublished>20240415T151627</firstPublished> <LastPublished>20240415T151627</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240415T151627</CMSDate> <articleSource/> <facebookInfo/> <meetingNumber>2976-24</meetingNumber> <byline>Nancy A. Melville</byline> <bylineText>NANCY A. MELVILLE</bylineText> <bylineFull>NANCY A. MELVILLE</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>Early data suggested that several new multicancer early detection (MCED) tests in development show promise for identifying cancers that lack routine screening o</metaDescription> <articlePDF/> <teaserImage/> <teaser>CanScan, MERCURY, and OncoSeek can detect a range of cancers and recognize the tissue of origin with high accuracy. </teaser> <title>No Routine Cancer Screening Option? New MCED Tests May Help</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>oncr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>chph</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>skin</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>im</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>fp</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>pn</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>ob</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>hemn</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>GIHOLD</publicationCode> <pubIssueName>January 2014</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> </publications_g> <publications> <term canonical="true">31</term> <term>6</term> <term>13</term> <term>21</term> <term>15</term> <term>25</term> <term>23</term> <term>22</term> <term>18</term> </publications> <sections> <term>39313</term> <term canonical="true">53</term> </sections> <topics> <term canonical="true">280</term> <term>278</term> <term>270</term> <term>31848</term> <term>292</term> <term>245</term> <term>256</term> <term>39570</term> <term>244</term> <term>242</term> <term>240</term> <term>238</term> <term>221</term> <term>217</term> <term>214</term> <term>67020</term> <term>59244</term> <term>61821</term> <term>192</term> <term>198</term> <term>263</term> <term>178</term> <term>179</term> <term>181</term> <term>59374</term> <term>196</term> <term>197</term> <term>233</term> <term>37637</term> <term>243</term> <term>38029</term> <term>49434</term> <term>304</term> <term>271</term> <term>250</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>No Routine Cancer Screening Option? New MCED Tests May Help</title> <deck/> </itemMeta> <itemContent> <p> <span class="tag metaDescription">Early data suggested that several new multicancer early detection (MCED) tests in development show promise for identifying cancers that lack routine screening options.</span> </p> <p>Analyses presented during a session at the American Association for Cancer Research annual meeting, revealed that three new MCED tests — CanScan, MERCURY, and OncoSeek — could detect a range of cancers and recognize the tissue of origin with high accuracy. One — OncoSeek — could also provide an affordable cancer screening option for individuals living in lower-income countries.<br/><br/>The need for these noninvasive liquid biopsy tests that can accurately identify multiple cancer types with a single blood draw, especially cancers without routine screening strategies, is pressing. “We know that the current cancer standard of care screening will identify less than 50% of all cancers, while more than 50% of all cancer deaths occur in types of cancer with no recommended screening,” said co-moderator Marie E. Wood, MD, of the University of Colorado Anschutz Medical Campus, in Aurora, Colorado.<br/><br/>That being said, “the clinical utility of multicancer detection tests has not been established and we’re concerned about issues of overdiagnosis and overtreatment,” she noted.</p> <h2>The Early Data </h2> <p>One new MCED test called CanScan, developed by Geneseeq Technology, uses plasma cell-free DNA fragment patterns to detect cancer signals as well as identify the tissue of origin across 13 cancer types.</p> <p>Overall, the CanScan test covers cancer types that contribute to two thirds of new cancer cases and 74% of morality globally, said presenter Shanshan Yang, of Geneseeq Research Institute, in Nanjing, China.<br/><br/>However, only five of these cancer types have screening recommendations issued by the US Preventive Services Task Force (USPSTF), Dr. Yang added.<br/><br/>The interim data comes from an ongoing large-scale prospective study evaluating the MCED test in a cohort of asymptomatic individuals between ages 45 and 75 years with an average risk for cancer and no cancer-related symptoms on enrollment.<br/><br/>Patients at baseline had their blood collected for the CanScan test and subsequently received annual routine physical exams once a year for 3 consecutive years, with an additional 2 years of follow-up. <br/><br/>The analysis included 3724 participants with analyzable samples at the data cutoff in September 2023. Among the 3724 participants, 29 had confirmed cancer diagnoses. Among these cases, 14 patients had their cancer confirmed through USPSTF recommended screening and 15 were detected through outside of standard USPSTF screening, such as a thyroid ultrasound, Dr. Yang explained.<br/><br/>Almost 90% of the cancers (26 of 29) were detected in the stage I or II, and eight (27.5%) were not one of the test’s 13 targeted cancer types.<br/><br/>The CanScan test had a sensitivity of 55.2%, identifying 16 of 29 of the patients with cancer, including 10 of 21 individuals with stage I (47.6%), and two of three with stage II (66.7%). <br/><br/>The test had a high specificity of 97.9%, meaning out of 100 people screened, only two had false negative findings.<br/><br/>Among the 15 patients who had their cancer detected outside of USPSTF screening recommendations, eight (53.3%) were found using a CanScan test, including patients with liver and endometrial cancers.<br/><br/>Compared with a positive predictive value of (PPV) of 1.6% with screening or physical exam methods alone, the CanScan test had a PPV of 17.4%, Dr. Yang reported. <br/><br/>“The MCED test holds significant potential for early cancer screening in asymptomatic populations,” Dr. Yang and colleagues concluded.<br/><br/>Another new MCED test called MERCURY, also developed by Geneseeq Technology and presented during the session, used a similar method to detect cancer signals and predict the tissue of origin across 13 cancer types.<br/><br/>The researchers initially validated the test using 3076 patients with cancer and 3477 healthy controls with a target specificity of 99%. In this group, researchers reported a sensitivity of 0.865 and a specificity of 0.989.<br/><br/>The team then performed an independent validation analysis with 1465 participants, 732 with cancer and 733 with no cancer, and confirmed a high sensitivity and specificity of 0.874 and 0.978, respectively. The sensitivity increased incrementally by cancer stage — 0.768 for stage I, 0.840 for stage II, 0.923 for stage III, and 0.971 for stage IV.<br/><br/>The test identified the tissue of origin with high accuracy, the researchers noted, but cautioned that the test needs “to be further validated in a prospective cohort study.”</p> <h2>MCED in Low-Income Settings</h2> <p>The session also featured findings on a new affordable MCED test called OncoSeek, which could provide greater access to cancer testing in low- and middle-income countries.</p> <p>The OncoSeek algorithm identifies the presence of cancer using seven protein tumor markers alongside clinical information, such as gender and age. Like other tests, the test also predicts the possible tissue of origin.<br/><br/>The test can be run on clinical protein assay instruments that are already widely available, such as Roche cobas analyzer, Mao Mao, MD, PhD, the founder and CEO of SeekIn, of Shenzhen, China, told this news organization.<br/><br/>This “feature makes the test accessible worldwide, even in low- and middle-income countries,” he said. “These instruments are fully-automated and part of today’s clinical practice. Therefore, the test does not require additional infrastructure building and lab personal training.”<br/><br/>Another notable advantage: the OncoSeek test only costs about $20, compared with other MCED tests, which can cost anywhere from $200 to $1000.<br/><br/>To validate the technology in a large, diverse cohort, Dr. Mao and colleagues enrolled approximately 10,000 participants, including 2003 cancer cases and 7888 non-cancer cases.<br/><br/>Peripheral blood was collected from each participant and analyzed using a panel of the seven protein tumor markers — AFP, CA125, CA15-3, CA19-9, CA72-4, CEA, and CYFRA 21-1.<br/><br/>To reduce the risk for false positive findings, the team designed the OncoSeek algorithm to achieve a specificity of 93%. Dr. Mao and colleagues found a sensitivity of 51.7%, resulting in an overall accuracy of 84.6%.<br/><br/>The performance was consistent in additional validation cohorts in Brazil, China, and the United States, with sensitivities ranging from 39.0% to 77.6% for detecting nine common cancer types, including breast, colorectal, liver, lung, <a href="https://emedicine.medscape.com/article/1256034-overview">lymphoma</a>, esophagus, ovary, pancreas, and stomach. The sensitivity for <a href="https://emedicine.medscape.com/article/280605-overview">pancreatic cancer</a> was at the high end of 77.6%.<br/><br/>The test could predict the tissue of origin in about two thirds of cases. <br/><br/>Given its low cost, OncoSeek represents an affordable and accessible option for cancer screening, the authors concluded. <br/><br/>Overall, “I think MCEDs have the potential to enhance cancer screening,” Dr. Wood told this news organization.<br/><br/>Still, questions remain about the optimal use of these tests, such as whether they are best for average-risk or higher risk populations, and how to integrate them into standard screening, she said. <br/><br/>Dr. Wood also cautioned that the studies presented in the session represent early data, and it is likely that the numbers, such as sensitivity and specificity, will change with further prospective analyses.<br/><br/>And ultimately, these tests should complement, not replace, standard screening. “A negative testing should not be taken as a sign to avoid standard screening,” Dr. Wood said.<br/><br/>Dr. Yang is an employee of Geneseeq Technology, Inc., and Dr. Mao is an employee of SeekIn. Dr. Wood had no disclosures to report.<span class="end"/></p> <p> <em>A version of this article appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/no-routine-cancer-screening-option-new-mced-tests-may-help-2024a1000711">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Oncologists Voice Ethical Concerns Over AI in Cancer Care

Article Type
Changed
Mon, 04/15/2024 - 17:37

 

TOPLINE:

A recent survey highlighted ethical concerns US oncologists have about using artificial intelligence (AI) to help make cancer treatment decisions and revealed some contradictory views about how best to integrate these tools into practice. Most respondents, for instance, said patients should not be expected to understand how AI tools work, but many also felt patients could make treatment decisions based on AI-generated recommendations. Most oncologists also felt responsible for protecting patients from biased AI, but few were confident that they could do so.

METHODOLOGY:

  • The US Food and Drug Administration (FDA) has  for use in various medical specialties over the past few decades, and increasingly, AI tools are being integrated into cancer care.
  • However, the uptake of these tools in oncology has raised ethical questions and concerns, including challenges with AI bias, error, or misuse, as well as issues explaining how an AI model reached a result.
  • In the current study, researchers asked 204 oncologists from 37 states for their views on the ethical implications of using AI for cancer care.
  • Among the survey respondents, 64% were men and 63% were non-Hispanic White; 29% were from academic practices, 47% had received some education on AI use in healthcare, and 45% were familiar with clinical decision models.
  • The researchers assessed respondents’ answers to various questions, including whether to provide informed consent for AI use and how oncologists would approach a scenario where the AI model and the oncologist recommended a different treatment regimen.

TAKEAWAY:

  • Overall, 81% of oncologists supported having patient consent to use an AI model during treatment decisions, and 85% felt that oncologists needed to be able to explain an AI-based clinical decision model to use it in the clinic; however, only 23% felt that patients also needed to be able to explain an AI model.
  • When an AI decision model recommended a different treatment regimen than the treating oncologist, the most common response (36.8%) was to present both options to the patient and let the patient decide. Oncologists from academic settings were about 2.5 times more likely than those from other settings to let the patient decide. About 34% of respondents said they would present both options but recommend the oncologist’s regimen, whereas about 22% said they would present both but recommend the AI’s regimen. A small percentage would only present the oncologist’s regimen (5%) or the AI’s regimen (about 2.5%).
  • About three of four respondents (76.5%) agreed that oncologists should protect patients from biased AI tools; however, only about one of four (27.9%) felt confident they could identify biased AI models.
  • Most oncologists (91%) felt that AI developers were responsible for the medico-legal problems associated with AI use; less than half (47%) said oncologists or hospitals (43%) shared this responsibility.

IN PRACTICE:

“Together, these data characterize barriers that may impede the ethical adoption of AI into cancer care. The findings suggest that the implementation of AI in oncology must include rigorous assessments of its effect on care decisions, as well as decisional responsibility when problems related to AI use arise,” the authors concluded.

SOURCE:

The study, with first author Andrew Hantel, MD, from Dana-Farber Cancer Institute, Boston, was published last month in JAMA Network Open.

LIMITATIONS:

The study had a moderate sample size and response rate, although demographics of participating oncologists appear to be nationally representative. The cross-sectional study design limited the generalizability of the findings over time as AI is integrated into cancer care.

DISCLOSURES:

The study was funded by the National Cancer Institute, the Dana-Farber McGraw/Patterson Research Fund, and the Mark Foundation Emerging Leader Award. Dr. Hantel reported receiving personal fees from AbbVie, AstraZeneca, the American Journal of Managed Care, Genentech, and GSK.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

A recent survey highlighted ethical concerns US oncologists have about using artificial intelligence (AI) to help make cancer treatment decisions and revealed some contradictory views about how best to integrate these tools into practice. Most respondents, for instance, said patients should not be expected to understand how AI tools work, but many also felt patients could make treatment decisions based on AI-generated recommendations. Most oncologists also felt responsible for protecting patients from biased AI, but few were confident that they could do so.

METHODOLOGY:

  • The US Food and Drug Administration (FDA) has  for use in various medical specialties over the past few decades, and increasingly, AI tools are being integrated into cancer care.
  • However, the uptake of these tools in oncology has raised ethical questions and concerns, including challenges with AI bias, error, or misuse, as well as issues explaining how an AI model reached a result.
  • In the current study, researchers asked 204 oncologists from 37 states for their views on the ethical implications of using AI for cancer care.
  • Among the survey respondents, 64% were men and 63% were non-Hispanic White; 29% were from academic practices, 47% had received some education on AI use in healthcare, and 45% were familiar with clinical decision models.
  • The researchers assessed respondents’ answers to various questions, including whether to provide informed consent for AI use and how oncologists would approach a scenario where the AI model and the oncologist recommended a different treatment regimen.

TAKEAWAY:

  • Overall, 81% of oncologists supported having patient consent to use an AI model during treatment decisions, and 85% felt that oncologists needed to be able to explain an AI-based clinical decision model to use it in the clinic; however, only 23% felt that patients also needed to be able to explain an AI model.
  • When an AI decision model recommended a different treatment regimen than the treating oncologist, the most common response (36.8%) was to present both options to the patient and let the patient decide. Oncologists from academic settings were about 2.5 times more likely than those from other settings to let the patient decide. About 34% of respondents said they would present both options but recommend the oncologist’s regimen, whereas about 22% said they would present both but recommend the AI’s regimen. A small percentage would only present the oncologist’s regimen (5%) or the AI’s regimen (about 2.5%).
  • About three of four respondents (76.5%) agreed that oncologists should protect patients from biased AI tools; however, only about one of four (27.9%) felt confident they could identify biased AI models.
  • Most oncologists (91%) felt that AI developers were responsible for the medico-legal problems associated with AI use; less than half (47%) said oncologists or hospitals (43%) shared this responsibility.

IN PRACTICE:

“Together, these data characterize barriers that may impede the ethical adoption of AI into cancer care. The findings suggest that the implementation of AI in oncology must include rigorous assessments of its effect on care decisions, as well as decisional responsibility when problems related to AI use arise,” the authors concluded.

SOURCE:

The study, with first author Andrew Hantel, MD, from Dana-Farber Cancer Institute, Boston, was published last month in JAMA Network Open.

LIMITATIONS:

The study had a moderate sample size and response rate, although demographics of participating oncologists appear to be nationally representative. The cross-sectional study design limited the generalizability of the findings over time as AI is integrated into cancer care.

DISCLOSURES:

The study was funded by the National Cancer Institute, the Dana-Farber McGraw/Patterson Research Fund, and the Mark Foundation Emerging Leader Award. Dr. Hantel reported receiving personal fees from AbbVie, AstraZeneca, the American Journal of Managed Care, Genentech, and GSK.

A version of this article appeared on Medscape.com.

 

TOPLINE:

A recent survey highlighted ethical concerns US oncologists have about using artificial intelligence (AI) to help make cancer treatment decisions and revealed some contradictory views about how best to integrate these tools into practice. Most respondents, for instance, said patients should not be expected to understand how AI tools work, but many also felt patients could make treatment decisions based on AI-generated recommendations. Most oncologists also felt responsible for protecting patients from biased AI, but few were confident that they could do so.

METHODOLOGY:

  • The US Food and Drug Administration (FDA) has  for use in various medical specialties over the past few decades, and increasingly, AI tools are being integrated into cancer care.
  • However, the uptake of these tools in oncology has raised ethical questions and concerns, including challenges with AI bias, error, or misuse, as well as issues explaining how an AI model reached a result.
  • In the current study, researchers asked 204 oncologists from 37 states for their views on the ethical implications of using AI for cancer care.
  • Among the survey respondents, 64% were men and 63% were non-Hispanic White; 29% were from academic practices, 47% had received some education on AI use in healthcare, and 45% were familiar with clinical decision models.
  • The researchers assessed respondents’ answers to various questions, including whether to provide informed consent for AI use and how oncologists would approach a scenario where the AI model and the oncologist recommended a different treatment regimen.

TAKEAWAY:

  • Overall, 81% of oncologists supported having patient consent to use an AI model during treatment decisions, and 85% felt that oncologists needed to be able to explain an AI-based clinical decision model to use it in the clinic; however, only 23% felt that patients also needed to be able to explain an AI model.
  • When an AI decision model recommended a different treatment regimen than the treating oncologist, the most common response (36.8%) was to present both options to the patient and let the patient decide. Oncologists from academic settings were about 2.5 times more likely than those from other settings to let the patient decide. About 34% of respondents said they would present both options but recommend the oncologist’s regimen, whereas about 22% said they would present both but recommend the AI’s regimen. A small percentage would only present the oncologist’s regimen (5%) or the AI’s regimen (about 2.5%).
  • About three of four respondents (76.5%) agreed that oncologists should protect patients from biased AI tools; however, only about one of four (27.9%) felt confident they could identify biased AI models.
  • Most oncologists (91%) felt that AI developers were responsible for the medico-legal problems associated with AI use; less than half (47%) said oncologists or hospitals (43%) shared this responsibility.

IN PRACTICE:

“Together, these data characterize barriers that may impede the ethical adoption of AI into cancer care. The findings suggest that the implementation of AI in oncology must include rigorous assessments of its effect on care decisions, as well as decisional responsibility when problems related to AI use arise,” the authors concluded.

SOURCE:

The study, with first author Andrew Hantel, MD, from Dana-Farber Cancer Institute, Boston, was published last month in JAMA Network Open.

LIMITATIONS:

The study had a moderate sample size and response rate, although demographics of participating oncologists appear to be nationally representative. The cross-sectional study design limited the generalizability of the findings over time as AI is integrated into cancer care.

DISCLOSURES:

The study was funded by the National Cancer Institute, the Dana-Farber McGraw/Patterson Research Fund, and the Mark Foundation Emerging Leader Award. Dr. Hantel reported receiving personal fees from AbbVie, AstraZeneca, the American Journal of Managed Care, Genentech, and GSK.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>167698</fileName> <TBEID>0C04F8D4.SIG</TBEID> <TBUniqueIdentifier>MD_0C04F8D4</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240412T154850</QCDate> <firstPublished>20240412T164351</firstPublished> <LastPublished>20240412T164352</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240412T164351</CMSDate> <articleSource/> <facebookInfo/> <meetingNumber/> <byline>Megan Brooks</byline> <bylineText>MEGAN BROOKS</bylineText> <bylineFull>MEGAN BROOKS</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>A recent survey highlighted ethical concerns US oncologists have about using artificial intelligence (AI) to help make cancer treatment decisions and revealed s</metaDescription> <articlePDF/> <teaserImage/> <teaser>Researchers ask 204 oncologists from 37 states for their views on the ethical implications of using AI for cancer care.</teaser> <title>Oncologists Voice Ethical Concerns Over AI in Cancer Care</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>oncr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>hemn</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>pn</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>skin</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>chph</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>im</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>fp</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>GIHOLD</publicationCode> <pubIssueName>January 2014</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> </publications_g> <publications> <term canonical="true">31</term> <term>18</term> <term>25</term> <term>13</term> <term>6</term> <term>21</term> <term>15</term> <term>22</term> </publications> <sections> <term canonical="true">27970</term> <term>39313</term> <term>86</term> </sections> <topics> <term canonical="true">278</term> <term>192</term> <term>198</term> <term>61821</term> <term>59244</term> <term>67020</term> <term>214</term> <term>217</term> <term>221</term> <term>238</term> <term>244</term> <term>242</term> <term>240</term> <term>39570</term> <term>256</term> <term>245</term> <term>270</term> <term>271</term> <term>31848</term> <term>292</term> <term>280</term> <term>27442</term> <term>179</term> <term>178</term> <term>59374</term> <term>37637</term> <term>233</term> <term>243</term> <term>250</term> <term>253</term> <term>49434</term> <term>303</term> <term>263</term> <term>38029</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Oncologists Voice Ethical Concerns Over AI in Cancer Care</title> <deck/> </itemMeta> <itemContent> <h2>TOPLINE:</h2> <p><span class="tag metaDescription">A recent survey highlighted ethical concerns US oncologists have about using artificial intelligence (AI) to help make cancer treatment decisions and revealed some contradictory views about how best to integrate these tools into practice.</span> Most respondents, for instance, said patients should not be expected to understand how AI tools work, but many also felt patients could make treatment decisions based on AI-generated recommendations. Most oncologists also felt responsible for protecting patients from biased AI, but few were confident that they could do so.</p> <h2>METHODOLOGY:</h2> <ul class="body"> <li>The US Food and Drug Administration (FDA) has  for use in various medical specialties over the past few decades, and increasingly, AI tools are being integrated into cancer care.</li> <li>However, the uptake of these tools in oncology has raised ethical questions and concerns, including challenges with AI bias, error, or misuse, as well as issues explaining how an AI model reached a result.</li> <li>In the current study, researchers asked 204 oncologists from 37 states for their views on the ethical implications of using AI for cancer care.</li> <li>Among the survey respondents, 64% were men and 63% were non-Hispanic White; 29% were from academic practices, 47% had received some education on AI use in healthcare, and 45% were familiar with clinical decision models.</li> <li>The researchers assessed respondents’ answers to various questions, including whether to provide informed consent for AI use and how oncologists would approach a scenario where the AI model and the oncologist recommended a different treatment regimen.</li> </ul> <h2>TAKEAWAY:</h2> <ul class="body"> <li>Overall, 81% of oncologists supported having patient consent to use an AI model during treatment decisions, and 85% felt that oncologists needed to be able to explain an AI-based clinical decision model to use it in the clinic; however, only 23% felt that patients also needed to be able to explain an AI model.</li> <li>When an AI decision model recommended a different treatment regimen than the treating oncologist, the most common response (36.8%) was to present both options to the patient and let the patient decide. Oncologists from academic settings were about 2.5 times more likely than those from other settings to let the patient decide. About 34% of respondents said they would present both options but recommend the oncologist’s regimen, whereas about 22% said they would present both but recommend the AI’s regimen. A small percentage would only present the oncologist’s regimen (5%) or the AI’s regimen (about 2.5%).</li> <li>About three of four respondents (76.5%) agreed that oncologists should protect patients from biased AI tools; however, only about one of four (27.9%) felt confident they could identify biased AI models.</li> <li>Most oncologists (91%) felt that AI developers were responsible for the medico-legal problems associated with AI use; less than half (47%) said oncologists or hospitals (43%) shared this responsibility.</li> </ul> <h2>IN PRACTICE:</h2> <p>“Together, these data characterize barriers that may impede the ethical adoption of AI into cancer care. The findings suggest that the implementation of AI in oncology must include rigorous assessments of its effect on care decisions, as well as decisional responsibility when problems related to AI use arise,” the authors concluded.</p> <h2>SOURCE:</h2> <p>The study, with first author Andrew Hantel, MD, from Dana-Farber Cancer Institute, Boston, was <a href="https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2816829">published</a> last month in <em>JAMA Network Open</em>.</p> <h2>LIMITATIONS:</h2> <p>The study had a moderate sample size and response rate, although demographics of participating oncologists appear to be nationally representative. The cross-sectional study design limited the generalizability of the findings over time as AI is integrated into cancer care.</p> <h2>DISCLOSURES:</h2> <p>The study was funded by the National Cancer Institute, the Dana-Farber McGraw/Patterson Research Fund, and the Mark Foundation Emerging Leader Award. Dr. Hantel reported receiving personal fees from AbbVie, AstraZeneca, the American Journal of Managed Care, Genentech, and GSK.</p> <p> <em>A version of this article appeared on <span class="Hyperlink"><a href="https://www.medscape.com/viewarticle/oncologists-voice-ethical-concerns-over-ai-cancer-care-2024a100071i">Medscape.com</a></span>.</em> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Circulating Tumor DNA Predicts Early Treatment Response in Patients With HER2-Positive Cancers

Article Type
Changed
Fri, 04/12/2024 - 10:09

— Monitoring a patient’s circulating tumor DNA (ctDNA) can provide valuable insights on early response to targeted therapies among patients with HER2-positive cancers.

This was the main finding of new data presented by study author Razelle Kurzrock, MD, at the American Association for Cancer Research annual meeting.

“We found that on-treatment ctDNA can detect progression before standard-of-care response assessments. These data suggest that monitoring ctDNA can provide clinicians with important prognostic information that may guide treatment decisions,” Dr. Kurzrock, professor at the Medical College of Wisconsin, Milwaukee, said during her presentation.

Kurzrock_Razelle_WISC_web.jpg
Dr. Razelle Kurzrock

Commenting on the clinical implications of these findings during an interview, she said the results suggest that ctDNA dynamics provide an early window into predicting response to targeted therapies in patients with HER2-altered cancers, confirming previous findings of the predictive value of ctDNA in other cancer types.

“Such monitoring may be useful in clinical trials and eventually in practice,” she added.
 

Need for new methods to predict early tumor response

Limitations of standard radiographic tumor assessments present challenges in determining clinical response, particularly for patients receiving targeted therapies.

During her talk, Dr. Kurzrock explained that although targeted therapies are effective for patients with specific molecular alterations, standard imaging assessments fail to uncover molecular-level changes within tumors, limiting the ability of clinicians to accurately assess a patient’s response to targeted therapies.

“In addition to limitations with imaging, patients and physicians want to know as soon as possible whether or not the agents are effective, especially if there are side effects,” Dr. Kurzrock during an interview. She added that monitoring early response may be especially important across tumor types, as HER2 therapies are increasingly being considered in the pan-cancer setting.

Commenting on the potential use of this method in other cancer types with HER2 alterations, Pashtoon Murtaza Kasi, MD, MS, noted that since the study relied on a tumor-informed assay, it would be applicable across diverse tumor types.

“It is less about tissue type but more about that particular patient’s tumor at that instant in time for which a unique barcode is created,” said Dr. Kasi, a medical oncologist at Weill Cornell Medicine, New York, who was not involved in the study.

In an interview, he added that the shedding and biology would affect the assay’s performance for some tissue types.
 

Design of patient-specific ctDNA assays

In this retrospective study, the researchers examined ctDNA dynamics in 58 patients with various HER2-positive tumor types, including breast, colorectal, and other solid malignancies harboring HER2 alterations. All the patients received combination HER2-targeted therapy with trastuzumab and pertuzumab in the phase 2 basket trial My Pathway (NCT02091141).

By leveraging comprehensive genomic profiling of each patient’s tumor, the researchers designed personalized ctDNA assays, tracking 2-16 tumor-specific genetic variants in the patients’ blood samples. FoundationOne Tracker was used to detect and quantify ctDNA at baseline and the third cycle of therapy (cycle 3 day 1, or C3D1).

During an interview, Dr. Kurzrock explained that FoundationOne Tracker is a personalized ctDNA monitoring assay that allows for the detection of ctDNA in plasma, enabling ongoing liquid-based monitoring and highly sensitive quantification of ctDNA levels as mean tumor molecules per milliliter of plasma.

Among the 52 patients for whom personalized ctDNA assays were successfully designed, 48 (92.3%) had ctDNA data available at baseline, with a median of 100.7 tumor molecules per milliliter of plasma. Most patients (89.6%) were deemed ctDNA-positive, with a median of 119.5 tumor molecules per milliliter of plasma.
 

 

 

Changes in ctDNA levels predict patient survival

The researchers found that patients who experienced a greater than 90% decline in ctDNA levels by the third treatment cycle had significantly longer overall survival (OS) than those with less than 90% ctDNA decline or any increase. According to data presented by Dr. Kurzrock, the median OS was not reached in the group with greater than 90% decline in on-treatment ctDNA levels, versus 9.4 months in the group with less than 90% decline or ctDNA increase (P = .007). These findings held true when the analysis was limited to the 14 patients with colorectal cancer, in which median OS was not reached in the group with greater than 90% decline in on-treatment ctDNA levels, versus 10.2 months in the group with less than 90% decline or ctDNA increase (P = 0.04).

Notably, the prognostic significance of ctDNA changes remained even among patients exhibiting radiographic stable disease, underscoring the limitations of relying solely on anatomic tumor measurements and highlighting the potential for ctDNA monitoring to complement standard clinical assessments. In the subset of patients with radiographic stable disease, those with a greater than 90% ctDNA decline had significantly longer OS than those with less ctDNA reduction (not reached versus 9.4 months; P = .01).

“When used as a complement to imaging, tissue-informed ctDNA monitoring with FoundationOne Tracker can provide more accuracy than imaging alone,” Dr. Kurzrock noted in an interview.

Dr. Kasi echoed Dr. Kurzrock’s enthusiasm regarding the clinical usefulness of these findings, saying, “Not only can you see very early on in whom the ctDNA is going down and clearing, but you can also tell apart within the group who has ‘stable disease’ as to who is deriving more benefit.”

The researchers also observed that increases in on-treatment ctDNA levels often preceded radiographic evidence of disease progression by a median of 1.3 months. These findings highlight the potential for ctDNA monitoring to complement standard clinical assessments, allowing us to detect treatment response and disease progression earlier than what is possible with imaging alone, Dr. Kurzrock explained during her talk. “This early warning signal could allow clinicians to intervene and modify treatment strategies before overt clinical deterioration,” she said.

In an interview, Dr. Kasi highlighted that this high sensitivity and specificity and the short half-life of the tumor-informed ctDNA assay make this liquid biopsy of great clinical value. “The short half-life of a few hours means that if you do an intervention to treat cancer with HER2-directed therapy, you can very quickly assess response to therapy way earlier than traditional radiographic methods.”

Dr. Kasi cautioned, however, that this assay would not capture whether new mutations or HER2 loss occurred at the time of resistance. “A repeat tissue biopsy or a next-generation sequencing-based plasma-only assay would be required for that,” he said.
 

Implementation of ctDNA monitoring in clinical trials

Dr. Kurzrock acknowledged that further research is needed to validate these results in larger, prospective cohorts before FoundationOne Tracker is adopted in the clinic. She noted, however, that this retrospective analysis, along with results from previous studies, provides a rationale for the use of ctDNA monitoring in clinical trials.

“In some centers like ours, ctDNA monitoring is already part of our standard of care since not only does it help from a physician standpoint to have a more accurate and early assessment of response, but patients also appreciate the information gained from ctDNA dynamics,” Dr. Kasi said in an interview. He explained that when radiographic findings are equivocal, ctDNA monitoring is an additional tool in their toolbox to help guide care.

He noted, however, that the cost is a challenge for implementing ctDNA monitoring as a complementary tool for real-time treatment response monitoring. “For serial monitoring, helping to reduce costs would be important in the long run,” he said in an interview. He added that obtaining sufficient tissue for testing using a tumor-informed assay can present a logistical challenge, at least for the first test. “You need sufficient tissue to make the barcode that you then follow along,” he explained.

“Developing guidelines through systematic studies about testing cadence would also be important. This would help establish whether ctDNA monitoring is helpful,” Dr. Kasi said in an interview. He explained that in some situations, biological variables affect the shedding and detection of ctDNA beyond the assay — in those cases, ctDNA monitoring may not be helpful. “Like any test, it is not meant for every patient or clinical question,” Dr. Kasi concluded.

Dr. Kurzrock and Dr. Kasi reported no relationships with entities whose primary business is producing, marketing, selling, reselling, or distributing healthcare products used by or on patients.

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

— Monitoring a patient’s circulating tumor DNA (ctDNA) can provide valuable insights on early response to targeted therapies among patients with HER2-positive cancers.

This was the main finding of new data presented by study author Razelle Kurzrock, MD, at the American Association for Cancer Research annual meeting.

“We found that on-treatment ctDNA can detect progression before standard-of-care response assessments. These data suggest that monitoring ctDNA can provide clinicians with important prognostic information that may guide treatment decisions,” Dr. Kurzrock, professor at the Medical College of Wisconsin, Milwaukee, said during her presentation.

Kurzrock_Razelle_WISC_web.jpg
Dr. Razelle Kurzrock

Commenting on the clinical implications of these findings during an interview, she said the results suggest that ctDNA dynamics provide an early window into predicting response to targeted therapies in patients with HER2-altered cancers, confirming previous findings of the predictive value of ctDNA in other cancer types.

“Such monitoring may be useful in clinical trials and eventually in practice,” she added.
 

Need for new methods to predict early tumor response

Limitations of standard radiographic tumor assessments present challenges in determining clinical response, particularly for patients receiving targeted therapies.

During her talk, Dr. Kurzrock explained that although targeted therapies are effective for patients with specific molecular alterations, standard imaging assessments fail to uncover molecular-level changes within tumors, limiting the ability of clinicians to accurately assess a patient’s response to targeted therapies.

“In addition to limitations with imaging, patients and physicians want to know as soon as possible whether or not the agents are effective, especially if there are side effects,” Dr. Kurzrock during an interview. She added that monitoring early response may be especially important across tumor types, as HER2 therapies are increasingly being considered in the pan-cancer setting.

Commenting on the potential use of this method in other cancer types with HER2 alterations, Pashtoon Murtaza Kasi, MD, MS, noted that since the study relied on a tumor-informed assay, it would be applicable across diverse tumor types.

“It is less about tissue type but more about that particular patient’s tumor at that instant in time for which a unique barcode is created,” said Dr. Kasi, a medical oncologist at Weill Cornell Medicine, New York, who was not involved in the study.

In an interview, he added that the shedding and biology would affect the assay’s performance for some tissue types.
 

Design of patient-specific ctDNA assays

In this retrospective study, the researchers examined ctDNA dynamics in 58 patients with various HER2-positive tumor types, including breast, colorectal, and other solid malignancies harboring HER2 alterations. All the patients received combination HER2-targeted therapy with trastuzumab and pertuzumab in the phase 2 basket trial My Pathway (NCT02091141).

By leveraging comprehensive genomic profiling of each patient’s tumor, the researchers designed personalized ctDNA assays, tracking 2-16 tumor-specific genetic variants in the patients’ blood samples. FoundationOne Tracker was used to detect and quantify ctDNA at baseline and the third cycle of therapy (cycle 3 day 1, or C3D1).

During an interview, Dr. Kurzrock explained that FoundationOne Tracker is a personalized ctDNA monitoring assay that allows for the detection of ctDNA in plasma, enabling ongoing liquid-based monitoring and highly sensitive quantification of ctDNA levels as mean tumor molecules per milliliter of plasma.

Among the 52 patients for whom personalized ctDNA assays were successfully designed, 48 (92.3%) had ctDNA data available at baseline, with a median of 100.7 tumor molecules per milliliter of plasma. Most patients (89.6%) were deemed ctDNA-positive, with a median of 119.5 tumor molecules per milliliter of plasma.
 

 

 

Changes in ctDNA levels predict patient survival

The researchers found that patients who experienced a greater than 90% decline in ctDNA levels by the third treatment cycle had significantly longer overall survival (OS) than those with less than 90% ctDNA decline or any increase. According to data presented by Dr. Kurzrock, the median OS was not reached in the group with greater than 90% decline in on-treatment ctDNA levels, versus 9.4 months in the group with less than 90% decline or ctDNA increase (P = .007). These findings held true when the analysis was limited to the 14 patients with colorectal cancer, in which median OS was not reached in the group with greater than 90% decline in on-treatment ctDNA levels, versus 10.2 months in the group with less than 90% decline or ctDNA increase (P = 0.04).

Notably, the prognostic significance of ctDNA changes remained even among patients exhibiting radiographic stable disease, underscoring the limitations of relying solely on anatomic tumor measurements and highlighting the potential for ctDNA monitoring to complement standard clinical assessments. In the subset of patients with radiographic stable disease, those with a greater than 90% ctDNA decline had significantly longer OS than those with less ctDNA reduction (not reached versus 9.4 months; P = .01).

“When used as a complement to imaging, tissue-informed ctDNA monitoring with FoundationOne Tracker can provide more accuracy than imaging alone,” Dr. Kurzrock noted in an interview.

Dr. Kasi echoed Dr. Kurzrock’s enthusiasm regarding the clinical usefulness of these findings, saying, “Not only can you see very early on in whom the ctDNA is going down and clearing, but you can also tell apart within the group who has ‘stable disease’ as to who is deriving more benefit.”

The researchers also observed that increases in on-treatment ctDNA levels often preceded radiographic evidence of disease progression by a median of 1.3 months. These findings highlight the potential for ctDNA monitoring to complement standard clinical assessments, allowing us to detect treatment response and disease progression earlier than what is possible with imaging alone, Dr. Kurzrock explained during her talk. “This early warning signal could allow clinicians to intervene and modify treatment strategies before overt clinical deterioration,” she said.

In an interview, Dr. Kasi highlighted that this high sensitivity and specificity and the short half-life of the tumor-informed ctDNA assay make this liquid biopsy of great clinical value. “The short half-life of a few hours means that if you do an intervention to treat cancer with HER2-directed therapy, you can very quickly assess response to therapy way earlier than traditional radiographic methods.”

Dr. Kasi cautioned, however, that this assay would not capture whether new mutations or HER2 loss occurred at the time of resistance. “A repeat tissue biopsy or a next-generation sequencing-based plasma-only assay would be required for that,” he said.
 

Implementation of ctDNA monitoring in clinical trials

Dr. Kurzrock acknowledged that further research is needed to validate these results in larger, prospective cohorts before FoundationOne Tracker is adopted in the clinic. She noted, however, that this retrospective analysis, along with results from previous studies, provides a rationale for the use of ctDNA monitoring in clinical trials.

“In some centers like ours, ctDNA monitoring is already part of our standard of care since not only does it help from a physician standpoint to have a more accurate and early assessment of response, but patients also appreciate the information gained from ctDNA dynamics,” Dr. Kasi said in an interview. He explained that when radiographic findings are equivocal, ctDNA monitoring is an additional tool in their toolbox to help guide care.

He noted, however, that the cost is a challenge for implementing ctDNA monitoring as a complementary tool for real-time treatment response monitoring. “For serial monitoring, helping to reduce costs would be important in the long run,” he said in an interview. He added that obtaining sufficient tissue for testing using a tumor-informed assay can present a logistical challenge, at least for the first test. “You need sufficient tissue to make the barcode that you then follow along,” he explained.

“Developing guidelines through systematic studies about testing cadence would also be important. This would help establish whether ctDNA monitoring is helpful,” Dr. Kasi said in an interview. He explained that in some situations, biological variables affect the shedding and detection of ctDNA beyond the assay — in those cases, ctDNA monitoring may not be helpful. “Like any test, it is not meant for every patient or clinical question,” Dr. Kasi concluded.

Dr. Kurzrock and Dr. Kasi reported no relationships with entities whose primary business is producing, marketing, selling, reselling, or distributing healthcare products used by or on patients.

— Monitoring a patient’s circulating tumor DNA (ctDNA) can provide valuable insights on early response to targeted therapies among patients with HER2-positive cancers.

This was the main finding of new data presented by study author Razelle Kurzrock, MD, at the American Association for Cancer Research annual meeting.

“We found that on-treatment ctDNA can detect progression before standard-of-care response assessments. These data suggest that monitoring ctDNA can provide clinicians with important prognostic information that may guide treatment decisions,” Dr. Kurzrock, professor at the Medical College of Wisconsin, Milwaukee, said during her presentation.

Kurzrock_Razelle_WISC_web.jpg
Dr. Razelle Kurzrock

Commenting on the clinical implications of these findings during an interview, she said the results suggest that ctDNA dynamics provide an early window into predicting response to targeted therapies in patients with HER2-altered cancers, confirming previous findings of the predictive value of ctDNA in other cancer types.

“Such monitoring may be useful in clinical trials and eventually in practice,” she added.
 

Need for new methods to predict early tumor response

Limitations of standard radiographic tumor assessments present challenges in determining clinical response, particularly for patients receiving targeted therapies.

During her talk, Dr. Kurzrock explained that although targeted therapies are effective for patients with specific molecular alterations, standard imaging assessments fail to uncover molecular-level changes within tumors, limiting the ability of clinicians to accurately assess a patient’s response to targeted therapies.

“In addition to limitations with imaging, patients and physicians want to know as soon as possible whether or not the agents are effective, especially if there are side effects,” Dr. Kurzrock during an interview. She added that monitoring early response may be especially important across tumor types, as HER2 therapies are increasingly being considered in the pan-cancer setting.

Commenting on the potential use of this method in other cancer types with HER2 alterations, Pashtoon Murtaza Kasi, MD, MS, noted that since the study relied on a tumor-informed assay, it would be applicable across diverse tumor types.

“It is less about tissue type but more about that particular patient’s tumor at that instant in time for which a unique barcode is created,” said Dr. Kasi, a medical oncologist at Weill Cornell Medicine, New York, who was not involved in the study.

In an interview, he added that the shedding and biology would affect the assay’s performance for some tissue types.
 

Design of patient-specific ctDNA assays

In this retrospective study, the researchers examined ctDNA dynamics in 58 patients with various HER2-positive tumor types, including breast, colorectal, and other solid malignancies harboring HER2 alterations. All the patients received combination HER2-targeted therapy with trastuzumab and pertuzumab in the phase 2 basket trial My Pathway (NCT02091141).

By leveraging comprehensive genomic profiling of each patient’s tumor, the researchers designed personalized ctDNA assays, tracking 2-16 tumor-specific genetic variants in the patients’ blood samples. FoundationOne Tracker was used to detect and quantify ctDNA at baseline and the third cycle of therapy (cycle 3 day 1, or C3D1).

During an interview, Dr. Kurzrock explained that FoundationOne Tracker is a personalized ctDNA monitoring assay that allows for the detection of ctDNA in plasma, enabling ongoing liquid-based monitoring and highly sensitive quantification of ctDNA levels as mean tumor molecules per milliliter of plasma.

Among the 52 patients for whom personalized ctDNA assays were successfully designed, 48 (92.3%) had ctDNA data available at baseline, with a median of 100.7 tumor molecules per milliliter of plasma. Most patients (89.6%) were deemed ctDNA-positive, with a median of 119.5 tumor molecules per milliliter of plasma.
 

 

 

Changes in ctDNA levels predict patient survival

The researchers found that patients who experienced a greater than 90% decline in ctDNA levels by the third treatment cycle had significantly longer overall survival (OS) than those with less than 90% ctDNA decline or any increase. According to data presented by Dr. Kurzrock, the median OS was not reached in the group with greater than 90% decline in on-treatment ctDNA levels, versus 9.4 months in the group with less than 90% decline or ctDNA increase (P = .007). These findings held true when the analysis was limited to the 14 patients with colorectal cancer, in which median OS was not reached in the group with greater than 90% decline in on-treatment ctDNA levels, versus 10.2 months in the group with less than 90% decline or ctDNA increase (P = 0.04).

Notably, the prognostic significance of ctDNA changes remained even among patients exhibiting radiographic stable disease, underscoring the limitations of relying solely on anatomic tumor measurements and highlighting the potential for ctDNA monitoring to complement standard clinical assessments. In the subset of patients with radiographic stable disease, those with a greater than 90% ctDNA decline had significantly longer OS than those with less ctDNA reduction (not reached versus 9.4 months; P = .01).

“When used as a complement to imaging, tissue-informed ctDNA monitoring with FoundationOne Tracker can provide more accuracy than imaging alone,” Dr. Kurzrock noted in an interview.

Dr. Kasi echoed Dr. Kurzrock’s enthusiasm regarding the clinical usefulness of these findings, saying, “Not only can you see very early on in whom the ctDNA is going down and clearing, but you can also tell apart within the group who has ‘stable disease’ as to who is deriving more benefit.”

The researchers also observed that increases in on-treatment ctDNA levels often preceded radiographic evidence of disease progression by a median of 1.3 months. These findings highlight the potential for ctDNA monitoring to complement standard clinical assessments, allowing us to detect treatment response and disease progression earlier than what is possible with imaging alone, Dr. Kurzrock explained during her talk. “This early warning signal could allow clinicians to intervene and modify treatment strategies before overt clinical deterioration,” she said.

In an interview, Dr. Kasi highlighted that this high sensitivity and specificity and the short half-life of the tumor-informed ctDNA assay make this liquid biopsy of great clinical value. “The short half-life of a few hours means that if you do an intervention to treat cancer with HER2-directed therapy, you can very quickly assess response to therapy way earlier than traditional radiographic methods.”

Dr. Kasi cautioned, however, that this assay would not capture whether new mutations or HER2 loss occurred at the time of resistance. “A repeat tissue biopsy or a next-generation sequencing-based plasma-only assay would be required for that,” he said.
 

Implementation of ctDNA monitoring in clinical trials

Dr. Kurzrock acknowledged that further research is needed to validate these results in larger, prospective cohorts before FoundationOne Tracker is adopted in the clinic. She noted, however, that this retrospective analysis, along with results from previous studies, provides a rationale for the use of ctDNA monitoring in clinical trials.

“In some centers like ours, ctDNA monitoring is already part of our standard of care since not only does it help from a physician standpoint to have a more accurate and early assessment of response, but patients also appreciate the information gained from ctDNA dynamics,” Dr. Kasi said in an interview. He explained that when radiographic findings are equivocal, ctDNA monitoring is an additional tool in their toolbox to help guide care.

He noted, however, that the cost is a challenge for implementing ctDNA monitoring as a complementary tool for real-time treatment response monitoring. “For serial monitoring, helping to reduce costs would be important in the long run,” he said in an interview. He added that obtaining sufficient tissue for testing using a tumor-informed assay can present a logistical challenge, at least for the first test. “You need sufficient tissue to make the barcode that you then follow along,” he explained.

“Developing guidelines through systematic studies about testing cadence would also be important. This would help establish whether ctDNA monitoring is helpful,” Dr. Kasi said in an interview. He explained that in some situations, biological variables affect the shedding and detection of ctDNA beyond the assay — in those cases, ctDNA monitoring may not be helpful. “Like any test, it is not meant for every patient or clinical question,” Dr. Kasi concluded.

Dr. Kurzrock and Dr. Kasi reported no relationships with entities whose primary business is producing, marketing, selling, reselling, or distributing healthcare products used by or on patients.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>167679</fileName> <TBEID>0C04F87C.SIG</TBEID> <TBUniqueIdentifier>MD_0C04F87C</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240412T095511</QCDate> <firstPublished>20240412T100530</firstPublished> <LastPublished>20240412T100530</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240412T100529</CMSDate> <articleSource> FROM AACR 2024 </articleSource> <facebookInfo/> <meetingNumber>2976-24</meetingNumber> <byline>Christos Evangelou</byline> <bylineText>CHRISTOS EVANGELOU, MSC, PHD</bylineText> <bylineFull>CHRISTOS EVANGELOU, MSC, PHD</bylineFull> <bylineTitleText/> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>SAN DIEGO — Monitoring a patient’s circulating tumor DNA (ctDNA) can provide valuable insights on early response to targeted therapies among patients with HER2-</metaDescription> <articlePDF/> <teaserImage>301109</teaserImage> <teaser>New study results suggest ctDNA dynamics provide an early window into predicting response to targeted therapies in patients with HER2-altered cancers.</teaser> <title>Circulating Tumor DNA Predicts Early Treatment Response in Patients With HER2-Positive Cancers</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>oncr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>chph</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>skin</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>nr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle>Neurology Reviews</journalTitle> <journalFullTitle>Neurology Reviews</journalFullTitle> <copyrightStatement>2018 Frontline Medical Communications Inc.,</copyrightStatement> </publicationData> <publicationData> <publicationCode>GIHOLD</publicationCode> <pubIssueName>January 2014</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> </publications_g> <publications> <term canonical="true">31</term> <term>6</term> <term>13</term> <term>22</term> </publications> <sections> <term canonical="true">53</term> <term>39313</term> </sections> <topics> <term canonical="true">270</term> <term>192</term> <term>67020</term> <term>198</term> <term>217</term> <term>214</term> <term>221</term> <term>240</term> <term>244</term> <term>39570</term> <term>245</term> <term>31848</term> <term>292</term> <term>256</term> </topics> <links> <link> <itemClass qcode="ninat:picture"/> <altRep contenttype="image/jpeg">images/2401281d.jpg</altRep> <description role="drol:caption">Dr. Razelle Kurzrock</description> <description role="drol:credit">Christos Evangelou/MDedge News</description> </link> </links> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Circulating Tumor DNA Predicts Early Treatment Response in Patients With HER2-Positive Cancers</title> <deck/> </itemMeta> <itemContent> <p> <span class="tag metaDescription"><span class="dateline">SAN DIEGO</span> — Monitoring a patient’s circulating tumor DNA (ctDNA) can provide valuable insights on early response to targeted therapies among patients with HER2-positive cancers.</span> </p> <p>This was the main finding of new data presented by study author Razelle Kurzrock, MD, at the <span class="Hyperlink"><a href="https://www.aacr.org/meeting/aacr-annual-meeting-2024/">American Association for Cancer Research annual meeting</a></span>.<br/><br/>“We found that on-treatment ctDNA can detect progression before standard-of-care response assessments. These data suggest that monitoring ctDNA can provide clinicians with important prognostic information that may guide treatment decisions,” Dr. Kurzrock, professor at the Medical College of Wisconsin, Milwaukee, said during her presentation.<br/><br/>[[{"fid":"301109","view_mode":"medstat_image_flush_right","fields":{"format":"medstat_image_flush_right","field_file_image_alt_text[und][0][value]":"Dr. Razelle Kurzrock, Medical College of WIsconsin, Milwaukee","field_file_image_credit[und][0][value]":"Christos Evangelou/MDedge News","field_file_image_caption[und][0][value]":"Dr. Razelle Kurzrock"},"type":"media","attributes":{"class":"media-element file-medstat_image_flush_right"}}]]Commenting on the clinical implications of these findings during an interview, she said the results suggest that ctDNA dynamics provide an early window into predicting response to targeted therapies in patients with HER2-altered cancers, confirming previous findings of the predictive value of ctDNA in other cancer types. <br/><br/>“Such monitoring may be useful in clinical trials and eventually in practice,” she added.<br/><br/></p> <h2>Need for new methods to predict early tumor response</h2> <p>Limitations of standard radiographic tumor assessments present challenges in determining clinical response, particularly for patients receiving targeted therapies. </p> <p>During her talk, Dr. Kurzrock explained that although targeted therapies are effective for patients with specific molecular alterations, standard imaging assessments fail to uncover molecular-level changes within tumors, limiting the ability of clinicians to accurately assess a patient’s response to targeted therapies.<br/><br/>“In addition to limitations with imaging, patients and physicians want to know as soon as possible whether or not the agents are effective, especially if there are side effects,” Dr. Kurzrock during an interview. She added that monitoring early response may be especially important across tumor types, as HER2 therapies are increasingly being considered in the pan-cancer setting.<br/><br/>Commenting on the potential use of this method in other cancer types with HER2 alterations, Pashtoon Murtaza Kasi, MD, MS, noted that since the study relied on a tumor-informed assay, it would be applicable across diverse tumor types. <br/><br/>“It is less about tissue type but more about that particular patient’s tumor at that instant in time for which a unique barcode is created,” said Dr. Kasi, a medical oncologist at Weill Cornell Medicine, New York, who was not involved in the study.<br/><br/>In an interview, he added that the shedding and biology would affect the assay’s performance for some tissue types.<br/><br/></p> <h2>Design of patient-specific ctDNA assays</h2> <p>In this retrospective study, the researchers examined ctDNA dynamics in 58 patients with various HER2-positive tumor types, including breast, colorectal, and other solid malignancies harboring HER2 alterations. All the patients received combination HER2-targeted therapy with trastuzumab and pertuzumab in the <span class="Hyperlink"><a href="https://classic.clinicaltrials.gov/ct2/show/NCT02091141">phase 2 basket trial My Pathway (NCT02091141)</a></span>.</p> <p>By leveraging comprehensive genomic profiling of each patient’s tumor, the researchers designed personalized ctDNA assays, tracking 2-16 tumor-specific genetic variants in the patients’ blood samples. FoundationOne Tracker was used to detect and quantify ctDNA at baseline and the third cycle of therapy (cycle 3 day 1, or C3D1).<br/><br/>During an interview, Dr. Kurzrock explained that FoundationOne Tracker is a personalized ctDNA monitoring assay that allows for the detection of ctDNA in plasma, enabling ongoing liquid-based monitoring and highly sensitive quantification of ctDNA levels as mean tumor molecules per milliliter of plasma. <br/><br/>Among the 52 patients for whom personalized ctDNA assays were successfully designed, 48 (92.3%) had ctDNA data available at baseline, with a median of 100.7 tumor molecules per milliliter of plasma. Most patients (89.6%) were deemed ctDNA-positive, with a median of 119.5 tumor molecules per milliliter of plasma.<br/><br/></p> <h2>Changes in ctDNA levels predict patient survival</h2> <p>The researchers found that patients who experienced a greater than 90% decline in ctDNA levels by the third treatment cycle had significantly longer overall survival (OS) than those with less than 90% ctDNA decline or any increase. According to data presented by Dr. Kurzrock, the median OS was not reached in the group with greater than 90% decline in on-treatment ctDNA levels, versus 9.4 months in the group with less than 90% decline or ctDNA increase (<em>P</em> = .007). These findings held true when the analysis was limited to the 14 patients with colorectal cancer, in which median OS was not reached in the group with greater than 90% decline in on-treatment ctDNA levels, versus 10.2 months in the group with less than 90% decline or ctDNA increase (<em>P</em> = 0.04).</p> <p>Notably, the prognostic significance of ctDNA changes remained even among patients exhibiting radiographic stable disease, underscoring the limitations of relying solely on anatomic tumor measurements and highlighting the potential for ctDNA monitoring to complement standard clinical assessments. In the subset of patients with radiographic stable disease, those with a greater than 90% ctDNA decline had significantly longer OS than those with less ctDNA reduction (not reached versus 9.4 months; <em>P</em> = .01).<br/><br/>“When used as a complement to imaging, tissue-informed ctDNA monitoring with FoundationOne Tracker can provide more accuracy than imaging alone,” Dr. Kurzrock noted in an interview. <br/><br/>Dr. Kasi echoed Dr. Kurzrock’s enthusiasm regarding the clinical usefulness of these findings, saying, “Not only can you see very early on in whom the ctDNA is going down and clearing, but you can also tell apart within the group who has ‘stable disease’ as to who is deriving more benefit.”<br/><br/>The researchers also observed that increases in on-treatment ctDNA levels often preceded radiographic evidence of disease progression by a median of 1.3 months. These findings highlight the potential for ctDNA monitoring to complement standard clinical assessments, allowing us to detect treatment response and disease progression earlier than what is possible with imaging alone, Dr. Kurzrock explained during her talk. “This early warning signal could allow clinicians to intervene and modify treatment strategies before overt clinical deterioration,” she said.<br/><br/>In an interview, Dr. Kasi highlighted that this high sensitivity and specificity and the short half-life of the tumor-informed ctDNA assay make this liquid biopsy of great clinical value. “The short half-life of a few hours means that if you do an intervention to treat cancer with HER2-directed therapy, you can very quickly assess response to therapy way earlier than traditional radiographic methods.”<br/><br/>Dr. Kasi cautioned, however, that this assay would not capture whether new mutations or HER2 loss occurred at the time of resistance. “A repeat tissue biopsy or a next-generation sequencing-based plasma-only assay would be required for that,” he said.<br/><br/></p> <h2>Implementation of ctDNA monitoring in clinical trials</h2> <p>Dr. Kurzrock acknowledged that further research is needed to validate these results in larger, prospective cohorts before FoundationOne Tracker is adopted in the clinic. She noted, however, that this retrospective analysis, along with results from previous studies, provides a rationale for the use of ctDNA monitoring in clinical trials.</p> <p>“In some centers like ours, ctDNA monitoring is already part of our standard of care since not only does it help from a physician standpoint to have a more accurate and early assessment of response, but patients also appreciate the information gained from ctDNA dynamics,” Dr. Kasi said in an interview. He explained that when radiographic findings are equivocal, ctDNA monitoring is an additional tool in their toolbox to help guide care.<br/><br/>He noted, however, that the cost is a challenge for implementing ctDNA monitoring as a complementary tool for real-time treatment response monitoring. “For serial monitoring, helping to reduce costs would be important in the long run,” he said in an interview. He added that obtaining sufficient tissue for testing using a tumor-informed assay can present a logistical challenge, at least for the first test. “You need sufficient tissue to make the barcode that you then follow along,” he explained.<br/><br/>“Developing guidelines through systematic studies about testing cadence would also be important. This would help establish whether ctDNA monitoring is helpful,” Dr. Kasi said in an interview. He explained that in some situations, biological variables affect the shedding and detection of ctDNA beyond the assay — in those cases, ctDNA monitoring may not be helpful. “Like any test, it is not meant for every patient or clinical question,” Dr. Kasi concluded.<br/><br/>Dr. Kurzrock and Dr. Kasi reported no relationships with entities whose primary business is producing, marketing, selling, reselling, or distributing healthcare products used by or on patients.</p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Article Source

FROM AACR 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Repeat MCED Testing May ID Early-Stage and Unscreened Cancers

Article Type
Changed
Mon, 04/15/2024 - 14:54

— A novel multicancer early detection (MCED) blood test has demonstrated promising real-world results in detecting new cancers, including several cases of early-stage disease.

This was the conclusion of recent data presented by Ora Karp Gordon, MD, MS, during a session at the American Association for Cancer Research annual meeting.

167643_Gordon2.tif
Dr. Ora Karp Gordon

The MCED test, known as Galleri, was made clinically available in the United States in April 2021. Developed by GRAIL LLC, the test analyzes cell-free DNA in the blood using targeted methylation analysis and machine learning to detect the presence of a cancer signal and determine its organ of origin or cancer signal origin. The initial screening of over 53,000 individuals with the Galleri test detected a cancer signal in 1.1% of participants.

The new real-world analysis examines the outcomes of repeat MCED testing in 5,794 individuals.

The study looked at individuals who initially received a ‘no cancer signal detected’ result and then underwent a second Galleri test. Over 80% of participants received their follow-up test 10-18 months after the first, with a median interval between blood draws of 12.9 months.

“The repeat tests detect those cancer cases that have reached the detection threshold since their last MCED test, which should be less than one year of incidence,” Dr. Gordon, professor at Saint John’s Cancer Institute, Santa Monica, California, said in an interview. “We are just now starting to see results from patients who get their second and even third round of screening.”

“Galleri is recommended to be used annually in addition to USPSTF [US Preventive Services Task Force]–recommended cancer screening tests, like mammography and colonoscopy,” she said.

This recommendation is based on a modeling study suggesting that annual screening would improve stage shift, diagnostic yield, and potentially mortality when compared to biennial screening, although biennial screening was still favorable compared with no screening, she explained.
 

Early Real-World Evidence of Repeat Testing

Among the cohort of 5,794 individuals who received repeat testing, 26 received a positive cancer signal on their second test, yielding a cancer signal detection rate of 0.45% (95% CI: 0.31%-0.66%). The cancer signal detection rate was slightly higher in men. The rate was 0.50% (95% CI: 0.32%-0.81%; 17 of 3367) in men versus 0.37% (95% CI: 0.2%-0.7%; 9 of 2427) in women.

During her presentation, Dr. Gordon highlighted that the repeat testing signal detection rate was lower than the initial 0.95% rate (95% CI: 0.87-1.0; 510 of 53,744) seen in the previous larger cohort of patients who were retested at 1 year.

She acknowledged that the lower cancer signal detection rate of repeat testing may indicate some degree of ‘early adopter’ bias, where those who return for a second test are systematically different from the general screening population. This could suggest that broader population-level screening may yield different results, she continued.
 

Shift Toward Unscreened Cancers

The top cancer types identified in the second round of testing were lymphoid, head and neck, bladder/urothelial, colorectal, and anal cancers. Clinicians were able to confirm clinical outcomes in 12 of 26 cases, in which cancer signals were detected. Of those 12 cases, 8 individuals received a cancer diagnosis and 4 did not have cancer. The remaining 14 of 26 cases in which cancer signals were detected are still under investigation.

“We found a shift away from USPSTF screen-detected cancers, like breast, lung, and prostate, and relative increase in unscreened urinary, head and neck, and lymphoid cancers, with 75% of cancers being those without any screening guidelines,” Dr. Gordon said in an interview.

She added that patients who choose to retest may have different cancer rates for several reasons, including bias toward a population that is health conscious and adhered to all recommended cancer screening.

“So the shift toward unscreened cancers is not unexpected and highlights the value of Galleri,” she said, but also acknowledged that “continued monitoring is needed to see if this translates in a persistent finding over time and tests.”
 

Shift Toward Early-Stage Cancers

Staging information was available for five cases, and Dr. Gordon highlighted in her talk that four of these confirmed cancers were stage I, including cancers of the anus, head and neck, bladder, and lymphoma. The fifth confirmed cancer with staging information was stage IV ovarian cancer.

“It is still early, and the numbers are very small, but the detection of early-stage cancers with second annual testing is very encouraging as these are the cases where MCED testing could have the greatest impact in improving outcomes through earlier treatment,” Dr. Gordon told this publication.

During an interview after the talk, Kenneth L. Kehl, MD, MPH, echoed that data must be confirmed in larger cohorts.

“The shift toward earlier stage cancers that are less detectable by standard screening methods is an interesting result, but we need to be cautious since the numbers were relatively small, and we do not have data on cancers that were diagnosed among patients whose second MCED test was also negative,” said Dr. Kehl, a medical oncologist at Dana-Farber Cancer Institute, Boston.
 

MCED Results Could Help Direct Diagnostic Workup

The test’s ability to predict the organ of origin was highly accurate, correctly identifying the cancer type in all eight confirmed cases. Among the eight cases with a confirmed cancer diagnosis, the accuracy of the first prediction was 100%, and diagnoses included invasive cancers across multiple tissues and organs, including anus, colon, head and neck, urothelial tract, ovary, and the lymphatic system.

“The fact that the site of origin for 100% of confirmed cancers was accurately predicted with GRAIL’s CSO by Galleri test confirms the promise that this can guide workup when a cancer signal is detected,” Dr. Gordon noted in the interview.
 

Looking Ahead

Dr. Kehl, who was not involved in the MCED study, noted in an interview that “further data on test characteristics beyond positive predictive value, including the sensitivity, specificity, and negative predictive value, as well as demonstration of clinical benefit — ideally in a randomized trial — will likely be required for MCED testing to become a standard public health recommendation.”

He added that challenges associated with implementing annual screening with MCED tests include the risks of both false positives and false negatives as testing becomes more widely available.

“False positives cause anxiety and lead to additional testing that may carry its own risks, and we need to understand if potentially false negative tests will be associated with less uptake of established screening strategies,” Dr. Kehl said in an interview. However, he noted that serial testing could lead to more frequent diagnoses of early-stage cancers that may be less detectable by standard methods.

Dr. Gordon reported financial relationships with GRAIL LLC and Genetic Technologies Corporation. Dr. Kehl reported no relationships with entities whose primary business is producing, marketing, selling, reselling, or distributing healthcare products used by or on patients.

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

— A novel multicancer early detection (MCED) blood test has demonstrated promising real-world results in detecting new cancers, including several cases of early-stage disease.

This was the conclusion of recent data presented by Ora Karp Gordon, MD, MS, during a session at the American Association for Cancer Research annual meeting.

167643_Gordon2.tif
Dr. Ora Karp Gordon

The MCED test, known as Galleri, was made clinically available in the United States in April 2021. Developed by GRAIL LLC, the test analyzes cell-free DNA in the blood using targeted methylation analysis and machine learning to detect the presence of a cancer signal and determine its organ of origin or cancer signal origin. The initial screening of over 53,000 individuals with the Galleri test detected a cancer signal in 1.1% of participants.

The new real-world analysis examines the outcomes of repeat MCED testing in 5,794 individuals.

The study looked at individuals who initially received a ‘no cancer signal detected’ result and then underwent a second Galleri test. Over 80% of participants received their follow-up test 10-18 months after the first, with a median interval between blood draws of 12.9 months.

“The repeat tests detect those cancer cases that have reached the detection threshold since their last MCED test, which should be less than one year of incidence,” Dr. Gordon, professor at Saint John’s Cancer Institute, Santa Monica, California, said in an interview. “We are just now starting to see results from patients who get their second and even third round of screening.”

“Galleri is recommended to be used annually in addition to USPSTF [US Preventive Services Task Force]–recommended cancer screening tests, like mammography and colonoscopy,” she said.

This recommendation is based on a modeling study suggesting that annual screening would improve stage shift, diagnostic yield, and potentially mortality when compared to biennial screening, although biennial screening was still favorable compared with no screening, she explained.
 

Early Real-World Evidence of Repeat Testing

Among the cohort of 5,794 individuals who received repeat testing, 26 received a positive cancer signal on their second test, yielding a cancer signal detection rate of 0.45% (95% CI: 0.31%-0.66%). The cancer signal detection rate was slightly higher in men. The rate was 0.50% (95% CI: 0.32%-0.81%; 17 of 3367) in men versus 0.37% (95% CI: 0.2%-0.7%; 9 of 2427) in women.

During her presentation, Dr. Gordon highlighted that the repeat testing signal detection rate was lower than the initial 0.95% rate (95% CI: 0.87-1.0; 510 of 53,744) seen in the previous larger cohort of patients who were retested at 1 year.

She acknowledged that the lower cancer signal detection rate of repeat testing may indicate some degree of ‘early adopter’ bias, where those who return for a second test are systematically different from the general screening population. This could suggest that broader population-level screening may yield different results, she continued.
 

Shift Toward Unscreened Cancers

The top cancer types identified in the second round of testing were lymphoid, head and neck, bladder/urothelial, colorectal, and anal cancers. Clinicians were able to confirm clinical outcomes in 12 of 26 cases, in which cancer signals were detected. Of those 12 cases, 8 individuals received a cancer diagnosis and 4 did not have cancer. The remaining 14 of 26 cases in which cancer signals were detected are still under investigation.

“We found a shift away from USPSTF screen-detected cancers, like breast, lung, and prostate, and relative increase in unscreened urinary, head and neck, and lymphoid cancers, with 75% of cancers being those without any screening guidelines,” Dr. Gordon said in an interview.

She added that patients who choose to retest may have different cancer rates for several reasons, including bias toward a population that is health conscious and adhered to all recommended cancer screening.

“So the shift toward unscreened cancers is not unexpected and highlights the value of Galleri,” she said, but also acknowledged that “continued monitoring is needed to see if this translates in a persistent finding over time and tests.”
 

Shift Toward Early-Stage Cancers

Staging information was available for five cases, and Dr. Gordon highlighted in her talk that four of these confirmed cancers were stage I, including cancers of the anus, head and neck, bladder, and lymphoma. The fifth confirmed cancer with staging information was stage IV ovarian cancer.

“It is still early, and the numbers are very small, but the detection of early-stage cancers with second annual testing is very encouraging as these are the cases where MCED testing could have the greatest impact in improving outcomes through earlier treatment,” Dr. Gordon told this publication.

During an interview after the talk, Kenneth L. Kehl, MD, MPH, echoed that data must be confirmed in larger cohorts.

“The shift toward earlier stage cancers that are less detectable by standard screening methods is an interesting result, but we need to be cautious since the numbers were relatively small, and we do not have data on cancers that were diagnosed among patients whose second MCED test was also negative,” said Dr. Kehl, a medical oncologist at Dana-Farber Cancer Institute, Boston.
 

MCED Results Could Help Direct Diagnostic Workup

The test’s ability to predict the organ of origin was highly accurate, correctly identifying the cancer type in all eight confirmed cases. Among the eight cases with a confirmed cancer diagnosis, the accuracy of the first prediction was 100%, and diagnoses included invasive cancers across multiple tissues and organs, including anus, colon, head and neck, urothelial tract, ovary, and the lymphatic system.

“The fact that the site of origin for 100% of confirmed cancers was accurately predicted with GRAIL’s CSO by Galleri test confirms the promise that this can guide workup when a cancer signal is detected,” Dr. Gordon noted in the interview.
 

Looking Ahead

Dr. Kehl, who was not involved in the MCED study, noted in an interview that “further data on test characteristics beyond positive predictive value, including the sensitivity, specificity, and negative predictive value, as well as demonstration of clinical benefit — ideally in a randomized trial — will likely be required for MCED testing to become a standard public health recommendation.”

He added that challenges associated with implementing annual screening with MCED tests include the risks of both false positives and false negatives as testing becomes more widely available.

“False positives cause anxiety and lead to additional testing that may carry its own risks, and we need to understand if potentially false negative tests will be associated with less uptake of established screening strategies,” Dr. Kehl said in an interview. However, he noted that serial testing could lead to more frequent diagnoses of early-stage cancers that may be less detectable by standard methods.

Dr. Gordon reported financial relationships with GRAIL LLC and Genetic Technologies Corporation. Dr. Kehl reported no relationships with entities whose primary business is producing, marketing, selling, reselling, or distributing healthcare products used by or on patients.

— A novel multicancer early detection (MCED) blood test has demonstrated promising real-world results in detecting new cancers, including several cases of early-stage disease.

This was the conclusion of recent data presented by Ora Karp Gordon, MD, MS, during a session at the American Association for Cancer Research annual meeting.

167643_Gordon2.tif
Dr. Ora Karp Gordon

The MCED test, known as Galleri, was made clinically available in the United States in April 2021. Developed by GRAIL LLC, the test analyzes cell-free DNA in the blood using targeted methylation analysis and machine learning to detect the presence of a cancer signal and determine its organ of origin or cancer signal origin. The initial screening of over 53,000 individuals with the Galleri test detected a cancer signal in 1.1% of participants.

The new real-world analysis examines the outcomes of repeat MCED testing in 5,794 individuals.

The study looked at individuals who initially received a ‘no cancer signal detected’ result and then underwent a second Galleri test. Over 80% of participants received their follow-up test 10-18 months after the first, with a median interval between blood draws of 12.9 months.

“The repeat tests detect those cancer cases that have reached the detection threshold since their last MCED test, which should be less than one year of incidence,” Dr. Gordon, professor at Saint John’s Cancer Institute, Santa Monica, California, said in an interview. “We are just now starting to see results from patients who get their second and even third round of screening.”

“Galleri is recommended to be used annually in addition to USPSTF [US Preventive Services Task Force]–recommended cancer screening tests, like mammography and colonoscopy,” she said.

This recommendation is based on a modeling study suggesting that annual screening would improve stage shift, diagnostic yield, and potentially mortality when compared to biennial screening, although biennial screening was still favorable compared with no screening, she explained.
 

Early Real-World Evidence of Repeat Testing

Among the cohort of 5,794 individuals who received repeat testing, 26 received a positive cancer signal on their second test, yielding a cancer signal detection rate of 0.45% (95% CI: 0.31%-0.66%). The cancer signal detection rate was slightly higher in men. The rate was 0.50% (95% CI: 0.32%-0.81%; 17 of 3367) in men versus 0.37% (95% CI: 0.2%-0.7%; 9 of 2427) in women.

During her presentation, Dr. Gordon highlighted that the repeat testing signal detection rate was lower than the initial 0.95% rate (95% CI: 0.87-1.0; 510 of 53,744) seen in the previous larger cohort of patients who were retested at 1 year.

She acknowledged that the lower cancer signal detection rate of repeat testing may indicate some degree of ‘early adopter’ bias, where those who return for a second test are systematically different from the general screening population. This could suggest that broader population-level screening may yield different results, she continued.
 

Shift Toward Unscreened Cancers

The top cancer types identified in the second round of testing were lymphoid, head and neck, bladder/urothelial, colorectal, and anal cancers. Clinicians were able to confirm clinical outcomes in 12 of 26 cases, in which cancer signals were detected. Of those 12 cases, 8 individuals received a cancer diagnosis and 4 did not have cancer. The remaining 14 of 26 cases in which cancer signals were detected are still under investigation.

“We found a shift away from USPSTF screen-detected cancers, like breast, lung, and prostate, and relative increase in unscreened urinary, head and neck, and lymphoid cancers, with 75% of cancers being those without any screening guidelines,” Dr. Gordon said in an interview.

She added that patients who choose to retest may have different cancer rates for several reasons, including bias toward a population that is health conscious and adhered to all recommended cancer screening.

“So the shift toward unscreened cancers is not unexpected and highlights the value of Galleri,” she said, but also acknowledged that “continued monitoring is needed to see if this translates in a persistent finding over time and tests.”
 

Shift Toward Early-Stage Cancers

Staging information was available for five cases, and Dr. Gordon highlighted in her talk that four of these confirmed cancers were stage I, including cancers of the anus, head and neck, bladder, and lymphoma. The fifth confirmed cancer with staging information was stage IV ovarian cancer.

“It is still early, and the numbers are very small, but the detection of early-stage cancers with second annual testing is very encouraging as these are the cases where MCED testing could have the greatest impact in improving outcomes through earlier treatment,” Dr. Gordon told this publication.

During an interview after the talk, Kenneth L. Kehl, MD, MPH, echoed that data must be confirmed in larger cohorts.

“The shift toward earlier stage cancers that are less detectable by standard screening methods is an interesting result, but we need to be cautious since the numbers were relatively small, and we do not have data on cancers that were diagnosed among patients whose second MCED test was also negative,” said Dr. Kehl, a medical oncologist at Dana-Farber Cancer Institute, Boston.
 

MCED Results Could Help Direct Diagnostic Workup

The test’s ability to predict the organ of origin was highly accurate, correctly identifying the cancer type in all eight confirmed cases. Among the eight cases with a confirmed cancer diagnosis, the accuracy of the first prediction was 100%, and diagnoses included invasive cancers across multiple tissues and organs, including anus, colon, head and neck, urothelial tract, ovary, and the lymphatic system.

“The fact that the site of origin for 100% of confirmed cancers was accurately predicted with GRAIL’s CSO by Galleri test confirms the promise that this can guide workup when a cancer signal is detected,” Dr. Gordon noted in the interview.
 

Looking Ahead

Dr. Kehl, who was not involved in the MCED study, noted in an interview that “further data on test characteristics beyond positive predictive value, including the sensitivity, specificity, and negative predictive value, as well as demonstration of clinical benefit — ideally in a randomized trial — will likely be required for MCED testing to become a standard public health recommendation.”

He added that challenges associated with implementing annual screening with MCED tests include the risks of both false positives and false negatives as testing becomes more widely available.

“False positives cause anxiety and lead to additional testing that may carry its own risks, and we need to understand if potentially false negative tests will be associated with less uptake of established screening strategies,” Dr. Kehl said in an interview. However, he noted that serial testing could lead to more frequent diagnoses of early-stage cancers that may be less detectable by standard methods.

Dr. Gordon reported financial relationships with GRAIL LLC and Genetic Technologies Corporation. Dr. Kehl reported no relationships with entities whose primary business is producing, marketing, selling, reselling, or distributing healthcare products used by or on patients.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>167643</fileName> <TBEID>0C04F817.SIG</TBEID> <TBUniqueIdentifier>MD_0C04F817</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240410T162036</QCDate> <firstPublished>20240410T163141</firstPublished> <LastPublished>20240410T163141</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240410T163141</CMSDate> <articleSource>FROM AACR 2024</articleSource> <facebookInfo/> <meetingNumber>2976-24</meetingNumber> <byline>Christos Evangelou</byline> <bylineText>CHRISTOS EVANGELOU, MSC, PHD</bylineText> <bylineFull>CHRISTOS EVANGELOU, MSC, PHD</bylineFull> <bylineTitleText>MDedge News</bylineTitleText> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>SAN DIEGO — A novel multicancer early detection (MCED) blood test has demonstrated promising real-world results in detecting new cancers, including several case</metaDescription> <articlePDF/> <teaserImage>301077</teaserImage> <teaser>Eight of 26 patients with cancer signals detected through MCED had cancer.</teaser> <title>Repeat MCED Testing May ID Early-Stage and Unscreened Cancers</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>1</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>oncr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>skin</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>ob</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>pn</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>im</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>fp</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>GIHOLD</publicationCode> <pubIssueName>January 2014</pubIssueName> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> <journalTitle/> <journalFullTitle/> <copyrightStatement/> </publicationData> </publications_g> <publications> <term canonical="true">31</term> <term>13</term> <term>23</term> <term>25</term> <term>21</term> <term>15</term> </publications> <sections> <term>39313</term> <term>27980</term> <term canonical="true">53</term> </sections> <topics> <term>192</term> <term>198</term> <term>214</term> <term>217</term> <term>221</term> <term>67020</term> <term>240</term> <term>244</term> <term>39570</term> <term>256</term> <term>245</term> <term>270</term> <term canonical="true">280</term> <term>31848</term> <term>292</term> <term>263</term> </topics> <links> <link> <itemClass qcode="ninat:picture"/> <altRep contenttype="image/jpeg">images/240127f3.jpg</altRep> <description role="drol:caption">Dr. Ora Karp Gordon</description> <description role="drol:credit">Christos Evangelou/MDedge News</description> </link> </links> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>Repeat MCED Testing May ID Early-Stage and Unscreened Cancers</title> <deck/> </itemMeta> <itemContent> <p> <span class="tag metaDescription"><span class="dateline">SAN DIEGO</span> — A novel multicancer early detection (MCED) blood test has demonstrated promising real-world results in detecting new cancers, including several cases of early-stage disease.</span> </p> <p>This was the conclusion of recent data presented by Ora Karp Gordon, MD, MS, during a session at the <span class="Hyperlink"><a href="https://www.aacr.org/meeting/aacr-annual-meeting-2024/">American Association for Cancer Research annual meeting</a></span>. <br/><br/>[[{"fid":"301077","view_mode":"medstat_image_flush_right","fields":{"format":"medstat_image_flush_right","field_file_image_alt_text[und][0][value]":"Dr. Ora Karp Gordon, professor at Saint John’s Cancer Institute, Santa Monica, California","field_file_image_credit[und][0][value]":"Christos Evangelou/MDedge News","field_file_image_caption[und][0][value]":"Dr. Ora Karp Gordon"},"type":"media","attributes":{"class":"media-element file-medstat_image_flush_right"}}]]The MCED test, known as Galleri, was made clinically available in the United States in April 2021. Developed by GRAIL LLC, the test analyzes cell-free DNA in the blood using targeted methylation analysis and machine learning to detect the presence of a cancer signal and determine its organ of origin or cancer signal origin. The initial screening of over 53,000 individuals with the Galleri test detected a cancer signal in 1.1% of participants. <br/><br/>The new real-world analysis examines the outcomes of repeat MCED testing in 5,794 individuals. <br/><br/>The study looked at individuals who initially received a ‘no cancer signal detected’ result and then underwent a second Galleri test. Over 80% of participants received their follow-up test 10-18 months after the first, with a median interval between blood draws of 12.9 months.<br/><br/>“The repeat tests detect those cancer cases that have reached the detection threshold since their last MCED test, which should be less than one year of incidence,” Dr. Gordon, professor at Saint John’s Cancer Institute, Santa Monica, California, said in an interview. “We are just now starting to see results from patients who get their second and even third round of screening.” <br/><br/>“Galleri is recommended to be used annually in addition to USPSTF [US Preventive Services Task Force]–recommended cancer screening tests, like mammography and colonoscopy,” she said.<br/><br/>This recommendation is based on a <span class="Hyperlink"><a href="https://grail.com/wp-content/uploads/2021/09/ESMO_Screening_Interval_Poster_G_Final_Submitted.pdf">modeling study</a></span> suggesting that annual screening would improve stage shift, diagnostic yield, and potentially mortality when compared to biennial screening, although biennial screening was still favorable compared with no screening, she explained.<br/><br/></p> <h2>Early Real-World Evidence of Repeat Testing</h2> <p>Among the cohort of 5,794 individuals who received repeat testing, 26 received a positive cancer signal on their second test, yielding a cancer signal detection rate of 0.45% (95% CI: 0.31%-0.66%). The cancer signal detection rate was slightly higher in men. The rate was 0.50% (95% CI: 0.32%-0.81%; 17 of 3367) in men versus 0.37% (95% CI: 0.2%-0.7%; 9 of 2427) in women. </p> <p>During her presentation, Dr. Gordon highlighted that the repeat testing signal detection rate was lower than the initial 0.95% rate (95% CI: 0.87-1.0; 510 of 53,744) seen in the previous larger cohort of patients who were retested at 1 year.<br/><br/>She acknowledged that the lower cancer signal detection rate of repeat testing may indicate some degree of ‘early adopter’ bias, where those who return for a second test are systematically different from the general screening population. This could suggest that broader population-level screening may yield different results, she continued.<br/><br/></p> <h2>Shift Toward Unscreened Cancers </h2> <p>The top cancer types identified in the second round of testing were lymphoid, head and neck, bladder/urothelial, colorectal, and anal cancers. Clinicians were able to confirm clinical outcomes in 12 of 26 cases, in which cancer signals were detected. Of those 12 cases, 8 individuals received a cancer diagnosis and 4 did not have cancer. The remaining 14 of 26 cases in which cancer signals were detected are still under investigation.</p> <p>“We found a shift away from USPSTF screen-detected cancers, like breast, lung, and prostate, and relative increase in unscreened urinary, head and neck, and lymphoid cancers, with 75% of cancers being those without any screening guidelines,” Dr. Gordon said in an interview.<br/><br/>She added that patients who choose to retest may have different cancer rates for several reasons, including bias toward a population that is health conscious and adhered to all recommended cancer screening. <br/><br/>“So the shift toward unscreened cancers is not unexpected and highlights the value of Galleri,” she said, but also acknowledged that “continued monitoring is needed to see if this translates in a persistent finding over time and tests.”<br/><br/></p> <h2>Shift Toward Early-Stage Cancers </h2> <p>Staging information was available for five cases, and Dr. Gordon highlighted in her talk that four of these confirmed cancers were stage I, including cancers of the anus, head and neck, bladder, and lymphoma. The fifth confirmed cancer with staging information was stage IV ovarian cancer.</p> <p>“It is still early, and the numbers are very small, but the detection of early-stage cancers with second annual testing is very encouraging as these are the cases where MCED testing could have the greatest impact in improving outcomes through earlier treatment,” Dr. Gordon told this publication. <br/><br/>During an interview after the talk, Kenneth L. Kehl, MD, MPH, echoed that data must be confirmed in larger cohorts. <br/><br/>“The shift toward earlier stage cancers that are less detectable by standard screening methods is an interesting result, but we need to be cautious since the numbers were relatively small, and we do not have data on cancers that were diagnosed among patients whose second MCED test was also negative,” said Dr. Kehl, a medical oncologist at Dana-Farber Cancer Institute, Boston.<br/><br/></p> <h2>MCED Results Could Help Direct Diagnostic Workup </h2> <p>The test’s ability to predict the organ of origin was highly accurate, correctly identifying the cancer type in all eight confirmed cases. Among the eight cases with a confirmed cancer diagnosis, the accuracy of the first prediction was 100%, and diagnoses included invasive cancers across multiple tissues and organs, including anus, colon, head and neck, urothelial tract, ovary, and the lymphatic system.</p> <p>“The fact that the site of origin for 100% of confirmed cancers was accurately predicted with GRAIL’s CSO by Galleri test confirms the promise that this can guide workup when a cancer signal is detected,” Dr. Gordon noted in the interview. <br/><br/></p> <h2>Looking Ahead</h2> <p>Dr. Kehl, who was not involved in the MCED study, noted in an interview that “further data on test characteristics beyond positive predictive value, including the sensitivity, specificity, and negative predictive value, as well as demonstration of clinical benefit — ideally in a randomized trial — will likely be required for MCED testing to become a standard public health recommendation.” </p> <p>He added that challenges associated with implementing annual screening with MCED tests include the risks of both false positives and false negatives as testing becomes more widely available. <br/><br/>“False positives cause anxiety and lead to additional testing that may carry its own risks, and we need to understand if potentially false negative tests will be associated with less uptake of established screening strategies,” Dr. Kehl said in an interview. However, he noted that serial testing could lead to more frequent diagnoses of early-stage cancers that may be less detectable by standard methods.<br/><br/>Dr. Gordon reported financial relationships with GRAIL LLC and Genetic Technologies Corporation. Dr. Kehl reported no relationships with entities whose primary business is producing, marketing, selling, reselling, or distributing healthcare products used by or on patients. </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> </itemContent> </newsItem> </itemSet></root>
Article Source

FROM AACR 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

ImPrint Identifies Patients With Breast Cancer Likely to Respond to Neoadjuvant Immunotherapy

Article Type
Changed
Thu, 04/11/2024 - 10:57

— Using ImPrint, an immune-related biomarker, clinicians can identify patients with breast cancer who are likely to respond to neoadjuvant immunotherapy, according to data from the ongoing phase 2 I-SPY2 trial.

Patient selection based on ImPrint class can result in high response rates and spare nonresponders the toxicities of immunotherapy, said Denise M. Wolf, PhD, during her presentation of the study results at the annual meeting of the American Association for Cancer Research (AACR).

“Our results show that patients with ER+/HER2-/ImPrint+ breast cancer have a very high probability of achieving complete response to immunotherapy, whereas those who are ER+/HER2-/ImPrint- have a low probability of responding,” noted Dr. Wolf, PhD, MSc of the University of California, San Francisco (UCSF), in an interview.

She added that, although effective, immunotherapy also carries the risk of serious immune-related toxicities, and knowledge of ImPrint class can help patients and physicians determine whether immunotherapy is a good treatment option. “Many patients will be willing to take the risk of immunotherapy toxicities if their odds of responding are very high, as is the case for ImPrint+ patients, but [are] likely less enthused with a low likelihood of response,” Dr. Wolf said during the interview.
 

Need for Predictive Biomarkers for Neoadjuvant Immunotherapy

Although neoadjuvant immunotherapy has become the standard treatment for patients with early-stage triple-negative breast cancer (TNBC), chemotherapy remains the mainstay of treatment for patients with hormone receptor–positive (HR+), human epidermal growth factor receptor 2–negative (HER2-) breast cancer. The I-SPY2 clinical trial is the first randomized clinical study to assess the efficacy of immunotherapy in the high-risk population of patients with HR+/HER2-, Dr. Wolf said. Data from this study suggest that a subset of HR+/HER2- patients may also derive substantial benefit from this approach compared with standard chemotherapy.

“We and others have previously observed that a minority of ER+/HER2- breast cancers are enriched for tumor-infiltrating lymphocytes and that high levels of immune-related gene signatures associate with improved survival in this subtype, as well as in TNBC,” noted Dr. Wolf during an interview.

She explained that patients with high-risk ER+/HER2- breast cancer were not responding to any of the experimental agent classes tested in the trial and showed particularly poor outcomes, and that she and her colleagues “wanted to see if immune-oncology agents would impact response in these patients.”
 

ImPrint, an Immune Expression Signature

Preliminary data from the I-SPY2 trial showed that immune-related gene signatures were associated with pathologic complete response (pCR) in patients with HR+/HER2- breast cancer treated with immunotherapy. This observation allowed investigators to develop a clinically applicable immune classifier, termed ImPrint, to predict response to immunotherapy in this population.

This immune classifier is a 53-gene signature developed using data from the first anti–programmed death-1 (PD-1) arm that included patients treated with pembrolizumab, explained Dr. Wolf.
 

Performance of ImPrint in Patients With HR+/HER2- Breast Cancer

Dr. Wolf presented new data on the performance of ImPrint in 204 patients with high-risk HR+/HER2- breast cancer from the following five immunotherapy arms of the I-SPY2 trial, at the meeting. These arms included: anti–PD-1, anti–PDL-1 plus PARP inhibitor, anti–PD-1/TLR9 dual immunotherapy, and anti–PD-1 with or without LAG3 inhibitor. Data from 191 patients treated with the current standard of care (paclitaxel followed by adriamycin and cyclophosphamide cytoxan) were included in the analysis as a control.

The pCR in the entire population across these five immunotherapy arms was 33%. The response rate in the control arm was 13.5%.

“The high pCR in the immunotherapy groups is remarkable given the traditionally poor response of HR+/HER2- tumors to standard neoadjuvant chemotherapy,” said Ritu Aneja, PhD, the associate dean for research and innovation at the University of Alabama at Birmingham and a breast cancer expert, who was not involved in the I-SPY2 trial.

When patients were stratified according to ImPrint status, significant differences were observed among the groups. In this analysis, 28% of HR+/HER2- patients were classified as ImPrint positive (likely sensitive) based on ImPrint expression levels in pretreatment mRNA samples, and these individuals achieved pCR rates as high as 76% with immunotherapy.

In comparison, pCR rates were only 16% in ImPrint-negative (likely resistant) patients. The highest response rate was observed in the anti–PD-1/TLR9 dual immunotherapy arm, with a pCR rate of greater than 90% in ImPrint-positive patients. In the control arm, pCR rates were 33% in ImPrint-positive and 8% in ImPrint-negative patients.

“These results suggest that a subset of [patients with] high-risk HR+/HER2- breast cancers is highly sensitive to immunotherapy,” said Dr. Aneja in an interview. “By using a specific and sensitive selection strategy like ImPrint, we may be able to identify patients who can achieve pCR rates similar to what we see with the best neoadjuvant therapies in triple-negative and HER2-positive disease.”
 

Ability of ImPrint to Predict Long-Term Outcomes

During her talk, Dr. Wolf explained that she and her research team currently do not have sufficient follow-up data to assess the ability of ImPrint to predict long-term outcomes. Therefore, they used the pCR data to predict long-term disease-free survival (DRFS) outcomes. Based on their model, HR+/HER2-/ImPrint+ patients treated with immunotherapy were estimated to have a 91% 5-year DRFS rate, compared with 80% for those receiving standard chemotherapy alone. This represents a 52% reduction in the risk of disease recurrence.

“This suggests not only a higher immediate response rate to therapy but also potential long-term benefits for patients identified as ImPrint+,” Dr. Aneja said, commenting on the significance of the DRFS data, during the interview, She added that the ability to predict longer-term outcomes is a critical advantage in selecting the most effective treatment strategies for patients.
 

Comparison of ImPrint With Other Biomarkers

The investigators compared ImPrint to other potential biomarkers for immunotherapy response, including MammaPrint (ultra) High2 risk (MP2) and tumor grade. During her talk, Dr. Wolf showed data demonstrating that ImPrint is a more precise predictor of pCR, with higher response rates than either of those other markers.

The pCR rates for MP2 and grade III were 56% and 45%, respectively, which are much smaller than the pCR rates observed for ImPrint+ patients (75%).

“This difference underscores ImPrint’s effectiveness in distinguishing patients who could benefit from immunotherapy, offering a pCR prediction accuracy that is significantly higher than seen with other biomarkers that have been proposed as selection markers for neoadjuvant immunotherapy trials in HR+/HER2- breast cancers, such as MP2 and tumor grade,” said Dr. Aneja, during the interview.
 

 

 

Looking Ahead — Implementation of Imprint for Patient Selection

Dr. Aneja echoed that the findings from the I-SPY2 trial advocate for the integration of biomarker-driven approaches, particularly the use of the ImPrint classifier, into the treatment planning process for high-risk HR+/HER2- breast cancer.

“This approach can enable clinicians to identify patients who are more likely to benefit from immunotherapy, thus personalizing treatment strategies and potentially enhancing treatment efficacy while minimizing exposure to unnecessary toxicity for those unlikely to respond,” she said.

Dr. Aneja added that while the I-SPY2 trial offers promising data on ImPrint’s efficacy, additional prospective studies are needed to validate these findings across diverse patient populations and settings, as well as the correlation between biomarker positivity and long-term clinical outcomes, including DRFS and overall survival. “This will help to better understand the full spectrum of benefits provided by immunotherapies in biomarker-selected patient groups,” she said.

Dr. Wolf and Dr. Aneja reported no relationships with entities whose primary business is producing, marketing, selling, reselling, or distributing healthcare products used by or on patients.

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

— Using ImPrint, an immune-related biomarker, clinicians can identify patients with breast cancer who are likely to respond to neoadjuvant immunotherapy, according to data from the ongoing phase 2 I-SPY2 trial.

Patient selection based on ImPrint class can result in high response rates and spare nonresponders the toxicities of immunotherapy, said Denise M. Wolf, PhD, during her presentation of the study results at the annual meeting of the American Association for Cancer Research (AACR).

“Our results show that patients with ER+/HER2-/ImPrint+ breast cancer have a very high probability of achieving complete response to immunotherapy, whereas those who are ER+/HER2-/ImPrint- have a low probability of responding,” noted Dr. Wolf, PhD, MSc of the University of California, San Francisco (UCSF), in an interview.

She added that, although effective, immunotherapy also carries the risk of serious immune-related toxicities, and knowledge of ImPrint class can help patients and physicians determine whether immunotherapy is a good treatment option. “Many patients will be willing to take the risk of immunotherapy toxicities if their odds of responding are very high, as is the case for ImPrint+ patients, but [are] likely less enthused with a low likelihood of response,” Dr. Wolf said during the interview.
 

Need for Predictive Biomarkers for Neoadjuvant Immunotherapy

Although neoadjuvant immunotherapy has become the standard treatment for patients with early-stage triple-negative breast cancer (TNBC), chemotherapy remains the mainstay of treatment for patients with hormone receptor–positive (HR+), human epidermal growth factor receptor 2–negative (HER2-) breast cancer. The I-SPY2 clinical trial is the first randomized clinical study to assess the efficacy of immunotherapy in the high-risk population of patients with HR+/HER2-, Dr. Wolf said. Data from this study suggest that a subset of HR+/HER2- patients may also derive substantial benefit from this approach compared with standard chemotherapy.

“We and others have previously observed that a minority of ER+/HER2- breast cancers are enriched for tumor-infiltrating lymphocytes and that high levels of immune-related gene signatures associate with improved survival in this subtype, as well as in TNBC,” noted Dr. Wolf during an interview.

She explained that patients with high-risk ER+/HER2- breast cancer were not responding to any of the experimental agent classes tested in the trial and showed particularly poor outcomes, and that she and her colleagues “wanted to see if immune-oncology agents would impact response in these patients.”
 

ImPrint, an Immune Expression Signature

Preliminary data from the I-SPY2 trial showed that immune-related gene signatures were associated with pathologic complete response (pCR) in patients with HR+/HER2- breast cancer treated with immunotherapy. This observation allowed investigators to develop a clinically applicable immune classifier, termed ImPrint, to predict response to immunotherapy in this population.

This immune classifier is a 53-gene signature developed using data from the first anti–programmed death-1 (PD-1) arm that included patients treated with pembrolizumab, explained Dr. Wolf.
 

Performance of ImPrint in Patients With HR+/HER2- Breast Cancer

Dr. Wolf presented new data on the performance of ImPrint in 204 patients with high-risk HR+/HER2- breast cancer from the following five immunotherapy arms of the I-SPY2 trial, at the meeting. These arms included: anti–PD-1, anti–PDL-1 plus PARP inhibitor, anti–PD-1/TLR9 dual immunotherapy, and anti–PD-1 with or without LAG3 inhibitor. Data from 191 patients treated with the current standard of care (paclitaxel followed by adriamycin and cyclophosphamide cytoxan) were included in the analysis as a control.

The pCR in the entire population across these five immunotherapy arms was 33%. The response rate in the control arm was 13.5%.

“The high pCR in the immunotherapy groups is remarkable given the traditionally poor response of HR+/HER2- tumors to standard neoadjuvant chemotherapy,” said Ritu Aneja, PhD, the associate dean for research and innovation at the University of Alabama at Birmingham and a breast cancer expert, who was not involved in the I-SPY2 trial.

When patients were stratified according to ImPrint status, significant differences were observed among the groups. In this analysis, 28% of HR+/HER2- patients were classified as ImPrint positive (likely sensitive) based on ImPrint expression levels in pretreatment mRNA samples, and these individuals achieved pCR rates as high as 76% with immunotherapy.

In comparison, pCR rates were only 16% in ImPrint-negative (likely resistant) patients. The highest response rate was observed in the anti–PD-1/TLR9 dual immunotherapy arm, with a pCR rate of greater than 90% in ImPrint-positive patients. In the control arm, pCR rates were 33% in ImPrint-positive and 8% in ImPrint-negative patients.

“These results suggest that a subset of [patients with] high-risk HR+/HER2- breast cancers is highly sensitive to immunotherapy,” said Dr. Aneja in an interview. “By using a specific and sensitive selection strategy like ImPrint, we may be able to identify patients who can achieve pCR rates similar to what we see with the best neoadjuvant therapies in triple-negative and HER2-positive disease.”
 

Ability of ImPrint to Predict Long-Term Outcomes

During her talk, Dr. Wolf explained that she and her research team currently do not have sufficient follow-up data to assess the ability of ImPrint to predict long-term outcomes. Therefore, they used the pCR data to predict long-term disease-free survival (DRFS) outcomes. Based on their model, HR+/HER2-/ImPrint+ patients treated with immunotherapy were estimated to have a 91% 5-year DRFS rate, compared with 80% for those receiving standard chemotherapy alone. This represents a 52% reduction in the risk of disease recurrence.

“This suggests not only a higher immediate response rate to therapy but also potential long-term benefits for patients identified as ImPrint+,” Dr. Aneja said, commenting on the significance of the DRFS data, during the interview, She added that the ability to predict longer-term outcomes is a critical advantage in selecting the most effective treatment strategies for patients.
 

Comparison of ImPrint With Other Biomarkers

The investigators compared ImPrint to other potential biomarkers for immunotherapy response, including MammaPrint (ultra) High2 risk (MP2) and tumor grade. During her talk, Dr. Wolf showed data demonstrating that ImPrint is a more precise predictor of pCR, with higher response rates than either of those other markers.

The pCR rates for MP2 and grade III were 56% and 45%, respectively, which are much smaller than the pCR rates observed for ImPrint+ patients (75%).

“This difference underscores ImPrint’s effectiveness in distinguishing patients who could benefit from immunotherapy, offering a pCR prediction accuracy that is significantly higher than seen with other biomarkers that have been proposed as selection markers for neoadjuvant immunotherapy trials in HR+/HER2- breast cancers, such as MP2 and tumor grade,” said Dr. Aneja, during the interview.
 

 

 

Looking Ahead — Implementation of Imprint for Patient Selection

Dr. Aneja echoed that the findings from the I-SPY2 trial advocate for the integration of biomarker-driven approaches, particularly the use of the ImPrint classifier, into the treatment planning process for high-risk HR+/HER2- breast cancer.

“This approach can enable clinicians to identify patients who are more likely to benefit from immunotherapy, thus personalizing treatment strategies and potentially enhancing treatment efficacy while minimizing exposure to unnecessary toxicity for those unlikely to respond,” she said.

Dr. Aneja added that while the I-SPY2 trial offers promising data on ImPrint’s efficacy, additional prospective studies are needed to validate these findings across diverse patient populations and settings, as well as the correlation between biomarker positivity and long-term clinical outcomes, including DRFS and overall survival. “This will help to better understand the full spectrum of benefits provided by immunotherapies in biomarker-selected patient groups,” she said.

Dr. Wolf and Dr. Aneja reported no relationships with entities whose primary business is producing, marketing, selling, reselling, or distributing healthcare products used by or on patients.

— Using ImPrint, an immune-related biomarker, clinicians can identify patients with breast cancer who are likely to respond to neoadjuvant immunotherapy, according to data from the ongoing phase 2 I-SPY2 trial.

Patient selection based on ImPrint class can result in high response rates and spare nonresponders the toxicities of immunotherapy, said Denise M. Wolf, PhD, during her presentation of the study results at the annual meeting of the American Association for Cancer Research (AACR).

“Our results show that patients with ER+/HER2-/ImPrint+ breast cancer have a very high probability of achieving complete response to immunotherapy, whereas those who are ER+/HER2-/ImPrint- have a low probability of responding,” noted Dr. Wolf, PhD, MSc of the University of California, San Francisco (UCSF), in an interview.

She added that, although effective, immunotherapy also carries the risk of serious immune-related toxicities, and knowledge of ImPrint class can help patients and physicians determine whether immunotherapy is a good treatment option. “Many patients will be willing to take the risk of immunotherapy toxicities if their odds of responding are very high, as is the case for ImPrint+ patients, but [are] likely less enthused with a low likelihood of response,” Dr. Wolf said during the interview.
 

Need for Predictive Biomarkers for Neoadjuvant Immunotherapy

Although neoadjuvant immunotherapy has become the standard treatment for patients with early-stage triple-negative breast cancer (TNBC), chemotherapy remains the mainstay of treatment for patients with hormone receptor–positive (HR+), human epidermal growth factor receptor 2–negative (HER2-) breast cancer. The I-SPY2 clinical trial is the first randomized clinical study to assess the efficacy of immunotherapy in the high-risk population of patients with HR+/HER2-, Dr. Wolf said. Data from this study suggest that a subset of HR+/HER2- patients may also derive substantial benefit from this approach compared with standard chemotherapy.

“We and others have previously observed that a minority of ER+/HER2- breast cancers are enriched for tumor-infiltrating lymphocytes and that high levels of immune-related gene signatures associate with improved survival in this subtype, as well as in TNBC,” noted Dr. Wolf during an interview.

She explained that patients with high-risk ER+/HER2- breast cancer were not responding to any of the experimental agent classes tested in the trial and showed particularly poor outcomes, and that she and her colleagues “wanted to see if immune-oncology agents would impact response in these patients.”
 

ImPrint, an Immune Expression Signature

Preliminary data from the I-SPY2 trial showed that immune-related gene signatures were associated with pathologic complete response (pCR) in patients with HR+/HER2- breast cancer treated with immunotherapy. This observation allowed investigators to develop a clinically applicable immune classifier, termed ImPrint, to predict response to immunotherapy in this population.

This immune classifier is a 53-gene signature developed using data from the first anti–programmed death-1 (PD-1) arm that included patients treated with pembrolizumab, explained Dr. Wolf.
 

Performance of ImPrint in Patients With HR+/HER2- Breast Cancer

Dr. Wolf presented new data on the performance of ImPrint in 204 patients with high-risk HR+/HER2- breast cancer from the following five immunotherapy arms of the I-SPY2 trial, at the meeting. These arms included: anti–PD-1, anti–PDL-1 plus PARP inhibitor, anti–PD-1/TLR9 dual immunotherapy, and anti–PD-1 with or without LAG3 inhibitor. Data from 191 patients treated with the current standard of care (paclitaxel followed by adriamycin and cyclophosphamide cytoxan) were included in the analysis as a control.

The pCR in the entire population across these five immunotherapy arms was 33%. The response rate in the control arm was 13.5%.

“The high pCR in the immunotherapy groups is remarkable given the traditionally poor response of HR+/HER2- tumors to standard neoadjuvant chemotherapy,” said Ritu Aneja, PhD, the associate dean for research and innovation at the University of Alabama at Birmingham and a breast cancer expert, who was not involved in the I-SPY2 trial.

When patients were stratified according to ImPrint status, significant differences were observed among the groups. In this analysis, 28% of HR+/HER2- patients were classified as ImPrint positive (likely sensitive) based on ImPrint expression levels in pretreatment mRNA samples, and these individuals achieved pCR rates as high as 76% with immunotherapy.

In comparison, pCR rates were only 16% in ImPrint-negative (likely resistant) patients. The highest response rate was observed in the anti–PD-1/TLR9 dual immunotherapy arm, with a pCR rate of greater than 90% in ImPrint-positive patients. In the control arm, pCR rates were 33% in ImPrint-positive and 8% in ImPrint-negative patients.

“These results suggest that a subset of [patients with] high-risk HR+/HER2- breast cancers is highly sensitive to immunotherapy,” said Dr. Aneja in an interview. “By using a specific and sensitive selection strategy like ImPrint, we may be able to identify patients who can achieve pCR rates similar to what we see with the best neoadjuvant therapies in triple-negative and HER2-positive disease.”
 

Ability of ImPrint to Predict Long-Term Outcomes

During her talk, Dr. Wolf explained that she and her research team currently do not have sufficient follow-up data to assess the ability of ImPrint to predict long-term outcomes. Therefore, they used the pCR data to predict long-term disease-free survival (DRFS) outcomes. Based on their model, HR+/HER2-/ImPrint+ patients treated with immunotherapy were estimated to have a 91% 5-year DRFS rate, compared with 80% for those receiving standard chemotherapy alone. This represents a 52% reduction in the risk of disease recurrence.

“This suggests not only a higher immediate response rate to therapy but also potential long-term benefits for patients identified as ImPrint+,” Dr. Aneja said, commenting on the significance of the DRFS data, during the interview, She added that the ability to predict longer-term outcomes is a critical advantage in selecting the most effective treatment strategies for patients.
 

Comparison of ImPrint With Other Biomarkers

The investigators compared ImPrint to other potential biomarkers for immunotherapy response, including MammaPrint (ultra) High2 risk (MP2) and tumor grade. During her talk, Dr. Wolf showed data demonstrating that ImPrint is a more precise predictor of pCR, with higher response rates than either of those other markers.

The pCR rates for MP2 and grade III were 56% and 45%, respectively, which are much smaller than the pCR rates observed for ImPrint+ patients (75%).

“This difference underscores ImPrint’s effectiveness in distinguishing patients who could benefit from immunotherapy, offering a pCR prediction accuracy that is significantly higher than seen with other biomarkers that have been proposed as selection markers for neoadjuvant immunotherapy trials in HR+/HER2- breast cancers, such as MP2 and tumor grade,” said Dr. Aneja, during the interview.
 

 

 

Looking Ahead — Implementation of Imprint for Patient Selection

Dr. Aneja echoed that the findings from the I-SPY2 trial advocate for the integration of biomarker-driven approaches, particularly the use of the ImPrint classifier, into the treatment planning process for high-risk HR+/HER2- breast cancer.

“This approach can enable clinicians to identify patients who are more likely to benefit from immunotherapy, thus personalizing treatment strategies and potentially enhancing treatment efficacy while minimizing exposure to unnecessary toxicity for those unlikely to respond,” she said.

Dr. Aneja added that while the I-SPY2 trial offers promising data on ImPrint’s efficacy, additional prospective studies are needed to validate these findings across diverse patient populations and settings, as well as the correlation between biomarker positivity and long-term clinical outcomes, including DRFS and overall survival. “This will help to better understand the full spectrum of benefits provided by immunotherapies in biomarker-selected patient groups,” she said.

Dr. Wolf and Dr. Aneja reported no relationships with entities whose primary business is producing, marketing, selling, reselling, or distributing healthcare products used by or on patients.

Publications
Publications
Topics
Article Type
Sections
Teambase XML
<?xml version="1.0" encoding="UTF-8"?>
<!--$RCSfile: InCopy_agile.xsl,v $ $Revision: 1.35 $-->
<!--$RCSfile: drupal.xsl,v $ $Revision: 1.7 $-->
<root generator="drupal.xsl" gversion="1.7"> <header> <fileName>167638</fileName> <TBEID>0C04F7DF.SIG</TBEID> <TBUniqueIdentifier>MD_0C04F7DF</TBUniqueIdentifier> <newsOrJournal>News</newsOrJournal> <publisherName>Frontline Medical Communications</publisherName> <storyname/> <articleType>2</articleType> <TBLocation>QC Done-All Pubs</TBLocation> <QCDate>20240409T180403</QCDate> <firstPublished>20240410T090956</firstPublished> <LastPublished>20240410T093722</LastPublished> <pubStatus qcode="stat:"/> <embargoDate/> <killDate/> <CMSDate>20240410T090955</CMSDate> <articleSource/> <facebookInfo/> <meetingNumber>2976-24</meetingNumber> <byline>Christos Evangelou</byline> <bylineText>CHRISTOS EVANGELOU, PHD, MSC </bylineText> <bylineFull>CHRISTOS EVANGELOU, PHD, MSC </bylineFull> <bylineTitleText>MDedge News</bylineTitleText> <USOrGlobal/> <wireDocType/> <newsDocType>News</newsDocType> <journalDocType/> <linkLabel/> <pageRange/> <citation/> <quizID/> <indexIssueDate/> <itemClass qcode="ninat:text"/> <provider qcode="provider:imng"> <name>IMNG Medical Media</name> <rightsInfo> <copyrightHolder> <name>Frontline Medical News</name> </copyrightHolder> <copyrightNotice>Copyright (c) 2015 Frontline Medical News, a Frontline Medical Communications Inc. company. All rights reserved. This material may not be published, broadcast, copied, or otherwise reproduced or distributed without the prior written permission of Frontline Medical Communications Inc.</copyrightNotice> </rightsInfo> </provider> <abstract/> <metaDescription>SAN DIEGO — Using ImPrint, an immune-related biomarker, clinicians can identify patients with breast cancer who are likely to respond to adjuvant immunotherapy,</metaDescription> <articlePDF/> <teaserImage/> <title>ImPrint Identifies Patients With Breast Cancer Likely to Respond to Neoadjuvant Immunotherapy</title> <deck/> <disclaimer/> <AuthorList/> <articleURL/> <doi/> <pubMedID/> <publishXMLStatus/> <publishXMLVersion>2</publishXMLVersion> <useEISSN>0</useEISSN> <urgency/> <pubPubdateYear/> <pubPubdateMonth/> <pubPubdateDay/> <pubVolume/> <pubNumber/> <wireChannels/> <primaryCMSID/> <CMSIDs/> <keywords/> <seeAlsos/> <publications_g> <publicationData> <publicationCode>oncr</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> <publicationData> <publicationCode>ob</publicationCode> <pubIssueName/> <pubArticleType/> <pubTopics/> <pubCategories/> <pubSections/> </publicationData> </publications_g> <publications> <term canonical="true">31</term> <term>23</term> </publications> <sections> <term canonical="true">53</term> <term>39313</term> <term>27980</term> </sections> <topics> <term canonical="true">192</term> <term>39570</term> <term>270</term> </topics> <links/> </header> <itemSet> <newsItem> <itemMeta> <itemRole>Main</itemRole> <itemClass>text</itemClass> <title>ImPrint Identifies Patients With Breast Cancer Likely to Respond to Neoadjuvant Immunotherapy</title> <deck/> </itemMeta> <itemContent> <p><span class="dateline">SAN DIEGO</span> — Using ImPrint, an immune-related biomarker, clinicians can identify patients with breast cancer who are likely to respond to adjuvant immunotherapy, according to data from the <span class="Hyperlink"><a href="https://clinicaltrials.gov/study/NCT01042379">ongoing phase 2 I-SPY2 trial</a></span>.</p> <p>Patient selection based on ImPrint class can result in high response rates and spare nonresponders the toxicities of immunotherapy, said Denise M. Wolf, PhD, during her presentation of the study results at the annual meeting of the <span class="Hyperlink"><a href="https://www.aacr.org/meeting/aacr-annual-meeting-2024/">American Association for Cancer Research (AACR)</a></span>.<br/><br/>“Our results show that patients with ER+/HER2-/ImPrint+ breast cancer have a very high probability of achieving complete response to immunotherapy, whereas those who are ER+/HER2-/ImPrint- have a low probability of responding,” noted Dr. Wolf, PhD, MSc of the University of California, San Francisco (UCSF), in an interview.<br/><br/>She added that, although effective, immunotherapy also carries the risk of serious immune-related toxicities, and knowledge of ImPrint class can help patients and physicians determine whether immunotherapy is a good treatment option. “Many patients will be willing to take the risk of immunotherapy toxicities if their odds of responding are very high, as is the case for ImPrint+ patients, but [are] likely less enthused with a low likelihood of response,” Dr. Wolf said during the interview.<br/><br/></p> <h2>Need for Predictive Biomarkers for Neoadjuvant Immunotherapy</h2> <p>Although neoadjuvant immunotherapy has become the standard treatment for patients with early-stage triple-negative breast cancer (TNBC), chemotherapy remains the mainstay of treatment for patients with hormone receptor–positive (HR+), human epidermal growth factor receptor 2–negative (HER2-) breast cancer. The I-SPY2 clinical trial is the first randomized clinical study to assess the efficacy of immunotherapy in the high-risk population of patients with HR+/HER2-, Dr. Wolf said. Data from this study suggest that a subset of HR+/HER2- patients may also derive substantial benefit from this approach compared with standard chemotherapy. </p> <p>“We and others have previously observed that a minority of ER+/HER2- breast cancers are enriched for tumor-infiltrating lymphocytes and that high levels of immune-related gene signatures associate with improved survival in this subtype, as well as in TNBC,” noted Dr. Wolf during an interview. <br/><br/>She explained that patients with high-risk ER+/HER2- breast cancer were not responding to any of the experimental agent classes tested in the trial and showed particularly poor outcomes, and that she and her colleagues “wanted to see if immune-oncology agents would impact response in these patients.”<br/><br/></p> <h2>ImPrint, an Immune Expression Signature </h2> <p>Preliminary data from the I-SPY2 trial showed that immune-related gene signatures were associated with pathologic complete response (pCR) in patients with HR+/HER2- breast cancer treated with immunotherapy. This observation allowed investigators to develop a clinically applicable immune classifier, termed ImPrint, to predict response to immunotherapy in this population. </p> <p>This immune classifier is a 53-gene signature developed using data from the first anti–programmed death-1 (PD-1) arm that included patients treated with pembrolizumab, explained Dr. Wolf.<br/><br/></p> <h2>Performance of ImPrint in Patients With HR+/HER2- Breast Cancer </h2> <p>Dr. Wolf presented new data on the performance of ImPrint in 204 patients with high-risk HR+/HER2- breast cancer from the following five immunotherapy arms of the I-SPY2 trial, at the meeting. These arms included: anti–PD-1, anti–PDL-1 plus PARP inhibitor, anti–PD-1/TLR9 dual immunotherapy, and anti–PD-1 with or without LAG3 inhibitor. Data from 191 patients treated with the current standard of care (paclitaxel followed by adriamycin and cyclophosphamide cytoxan) were included in the analysis as a control. </p> <p>The pCR in the entire population across these five immunotherapy arms was 33%. The response rate in the control arm was 13.5%. <br/><br/>“The high pCR in the immunotherapy groups is remarkable given the traditionally poor response of HR+/HER2- tumors to standard neoadjuvant chemotherapy,” said Ritu Aneja, PhD, the associate dean for research and innovation at the University of Alabama at Birmingham and a breast cancer expert, who was not involved in the I-SPY2 trial.<br/><br/>When patients were stratified according to ImPrint status, significant differences were observed among the groups. In this analysis, 28% of HR+/HER2- patients were classified as ImPrint positive (likely sensitive) based on ImPrint expression levels in pretreatment mRNA samples, and these individuals achieved pCR rates as high as 76% with immunotherapy. <br/><br/>In comparison, pCR rates were only 16% in ImPrint-negative (likely resistant) patients. The highest response rate was observed in the anti–PD-1/TLR9 dual immunotherapy arm, with a pCR rate of greater than 90% in ImPrint-positive patients. In the control arm, pCR rates were 33% in ImPrint-positive and 8% in ImPrint-negative patients.<br/><br/>“These results suggest that a subset of [patients with] high-risk HR+/HER2- breast cancers is highly sensitive to immunotherapy,” said Dr. Aneja in an interview. “By using a specific and sensitive selection strategy like ImPrint, we may be able to identify patients who can achieve pCR rates similar to what we see with the best neoadjuvant therapies in triple-negative and HER2-positive disease.” <br/><br/></p> <h2>Ability of ImPrint to Predict Long-Term Outcomes </h2> <p>During her talk, Dr. Wolf explained that she and her research team currently do not have sufficient follow-up data to assess the ability of ImPrint to predict long-term outcomes. Therefore, they used the pCR data to predict long-term disease-free survival (DRFS) outcomes. Based on their model, HR+/HER2-/ImPrint+ patients treated with immunotherapy were estimated to have a 91% 5-year DRFS rate, compared with 80% for those receiving standard chemotherapy alone. This represents a 52% reduction in the risk of disease recurrence.</p> <p>“This suggests not only a higher immediate response rate to therapy but also potential long-term benefits for patients identified as ImPrint+,” Dr. Aneja said, commenting on the significance of the DRFS data, during the interview, She added that the ability to predict longer-term outcomes is a critical advantage in selecting the most effective treatment strategies for patients.<br/><br/></p> <h2>Comparison of ImPrint With Other Biomarkers</h2> <p>The investigators compared ImPrint to other potential biomarkers for immunotherapy response, including MammaPrint (ultra) High2 risk (MP2) and tumor grade. During her talk, Dr. Wolf showed data demonstrating that ImPrint is a more precise predictor of pCR, with higher response rates than either of those other markers. <br/><br/>The pCR rates for MP2 and grade III were 56% and 45%, respectively, which are much smaller than the pCR rates observed for ImPrint+ patients (75%). </p> <p>“This difference underscores ImPrint’s effectiveness in distinguishing patients who could benefit from immunotherapy, offering a pCR prediction accuracy that is significantly higher than seen with other biomarkers that have been proposed as selection markers for neoadjuvant immunotherapy trials in HR+/HER2- breast cancers, such as MP2 and tumor grade,” said Dr. Aneja, during the interview.<br/><br/></p> <h2>Looking Ahead — Implementation of Imprint for Patient Selection</h2> <p>Dr. Aneja echoed that the findings from the I-SPY2 trial advocate for the integration of biomarker-driven approaches, particularly the use of the ImPrint classifier, into the treatment planning process for high-risk HR+/HER2- breast cancer. </p> <p>“This approach can enable clinicians to identify patients who are more likely to benefit from immunotherapy, thus personalizing treatment strategies and potentially enhancing treatment efficacy while minimizing exposure to unnecessary toxicity for those unlikely to respond,” she said. <br/><br/>Dr. Aneja added that while the I-SPY2 trial offers promising data on ImPrint’s efficacy, additional prospective studies are needed to validate these findings across diverse patient populations and settings, as well as the correlation between biomarker positivity and long-term clinical outcomes, including DRFS and overall survival. “This will help to better understand the full spectrum of benefits provided by immunotherapies in biomarker-selected patient groups,” she said.<br/><br/>Dr. Wolf and Dr. Aneja reported no relationships with entities whose primary business is producing, marketing, selling, reselling, or distributing healthcare products used by or on patients.<span class="end"/> </p> </itemContent> </newsItem> <newsItem> <itemMeta> <itemRole>teaser</itemRole> <itemClass>text</itemClass> <title/> <deck/> </itemMeta> <itemContent> <p>Experts discuss the first randomized clinical study to assess the efficacy of immunotherapy in patients with HR+/HER2- breast cancer.</p> </itemContent> </newsItem> </itemSet></root>
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article